The Tools of the Analysis

- **Main Model:**
 - ESU01 (62 equations)
 - By Tilak Abeysinghe and Choy Keen Meng
 - (Book is out, “The Singapore Economy: An Econometric Perspective”, Routledge 2007)

- **Objectives of the model:**
 - Understanding Singapore’s macroeconomic structure
 - Policy Analysis
 - Forecasting
The Tools of the Analysis

- ESU Multi-country model (12 equations)
 By Tilak Abeysinghe
 NBER Working paper and other publications

- Objectives of the model:
 - Transmission of shocks to GDP across borders
 - Forecasting to generate FORGDP
 - First-cut forecasts on Singapore’s GDP growth
The Tools of the Analysis

- **Housing market model** (Satellite model for ESU01)
 By Tilak Abeysinghe and Gu Jiaying

- **6 equations:**
 - Long run equilibrium price
 - Short run price adjustments
 - Housing stock adjustment (identity)
 - New housing supply (residential investment)
 - Vacancy rate
 - User cost of housing (identity)

Plus some bridging equations
Projections on the Singapore economy

- Medium term projections (last chapter of the book)

Under very plausible assumptions about external demand and assuming investment and labor inflows continue,

Singapore is likely to grow by 6-7% over the next decade.
Projections on the Singapore economy

- Short term forecasts (barring unexpected events)

2007Q4 is likely to register another healthy growth rate close to 9%.

2008 growth may exceed 8%. Lower bound 6.5%
Projections on the Singapore economy

- Why the optimism?

The model picks up the increased intra-regional trade effect, especially China (see next slide)
Percent Change in export shares between 2000 and 2006

<table>
<thead>
<tr>
<th>Country</th>
<th>Spore</th>
<th>Mal</th>
<th>Indo</th>
<th>Thai</th>
<th>Phil</th>
<th>S-Korea</th>
<th>Taiwan</th>
<th>HK</th>
<th>China</th>
<th>Jap</th>
<th>USA</th>
<th>Rest OECD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spore</td>
<td>0.0</td>
<td>-2.5</td>
<td>5.0</td>
<td>0.2</td>
<td>-0.4</td>
<td>0.9</td>
<td>-0.8</td>
<td>2.2</td>
<td>5.9</td>
<td>-1.2</td>
<td>-7.7</td>
<td>-1.6</td>
</tr>
<tr>
<td>Mal</td>
<td>-1.6</td>
<td>0.0</td>
<td>0.9</td>
<td>2.2</td>
<td>-0.1</td>
<td>0.5</td>
<td>-0.9</td>
<td>1.5</td>
<td>5.0</td>
<td>-2.0</td>
<td>-2.2</td>
<td>-3.3</td>
</tr>
<tr>
<td>Indo</td>
<td>-1.4</td>
<td>1.5</td>
<td>0.0</td>
<td>1.3</td>
<td>0.4</td>
<td>2.9</td>
<td>-0.9</td>
<td>-2.6</td>
<td>5.2</td>
<td>6.5</td>
<td>-8.5</td>
<td>-4.3</td>
</tr>
<tr>
<td>Thai</td>
<td>-1.5</td>
<td>2.1</td>
<td>1.6</td>
<td>0.0</td>
<td>0.5</td>
<td>0.6</td>
<td>-1.1</td>
<td>0.7</td>
<td>5.5</td>
<td>-0.2</td>
<td>-6.1</td>
<td>-2.2</td>
</tr>
<tr>
<td>Phil</td>
<td>0.1</td>
<td>1.3</td>
<td>0.7</td>
<td>0.6</td>
<td>0.0</td>
<td>0.4</td>
<td>-0.3</td>
<td>3.0</td>
<td>10.3</td>
<td>3.0</td>
<td>-15.4</td>
<td>-3.7</td>
</tr>
<tr>
<td>S-Korea</td>
<td>-0.6</td>
<td>-0.8</td>
<td>-0.1</td>
<td>0.2</td>
<td>-1.1</td>
<td>0.0</td>
<td>-0.3</td>
<td>-0.3</td>
<td>15.0</td>
<td>-2.6</td>
<td>-5.5</td>
<td>-3.8</td>
</tr>
<tr>
<td>Taiwan</td>
<td>0.5</td>
<td>-0.1</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.9</td>
<td>0.0</td>
<td>-5.2</td>
<td>20.0</td>
<td>-2.4</td>
<td>-9.9</td>
<td>-4.2</td>
</tr>
<tr>
<td>HK</td>
<td>-0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>-0.1</td>
<td>0.7</td>
<td>-0.5</td>
<td>0.0</td>
<td>11.3</td>
<td>-0.3</td>
<td>-7.7</td>
<td>-3.4</td>
</tr>
<tr>
<td>China</td>
<td>0.8</td>
<td>1.0</td>
<td>0.6</td>
<td>0.6</td>
<td>0.4</td>
<td>2.9</td>
<td>-0.3</td>
<td>-6.7</td>
<td>0.0</td>
<td>-0.6</td>
<td>-2.9</td>
<td>4.3</td>
</tr>
<tr>
<td>Japan</td>
<td>-0.9</td>
<td>-0.6</td>
<td>0.2</td>
<td>1.1</td>
<td>-0.5</td>
<td>2.7</td>
<td>0.2</td>
<td>1.7</td>
<td>8.6</td>
<td>0.0</td>
<td>-8.4</td>
<td>-4.0</td>
</tr>
<tr>
<td>USA</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-0.3</td>
<td>0.3</td>
<td>-0.9</td>
<td>0.0</td>
<td>3.9</td>
<td>-2.7</td>
<td>0.0</td>
<td>-0.2</td>
</tr>
<tr>
<td>ROECD</td>
<td>0.1</td>
<td>0.1</td>
<td>0.5</td>
<td>-0.1</td>
<td>-0.2</td>
<td>6.6</td>
<td>0.6</td>
<td>-1.9</td>
<td>-1.6</td>
<td>-0.5</td>
<td>-3.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Housing Stock

<table>
<thead>
<tr>
<th></th>
<th>HDB and Other Govt</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,2,3-room</td>
<td>4-room</td>
<td>5-room</td>
<td>Exec</td>
<td>Total HDB+</td>
<td>Private</td>
<td>Total</td>
</tr>
<tr>
<td>2005</td>
<td>276605</td>
<td>327701</td>
<td>207299</td>
<td>65160</td>
<td>879566</td>
<td>229356</td>
<td>1108922</td>
</tr>
<tr>
<td>2006</td>
<td>272736</td>
<td>330416</td>
<td>207879</td>
<td>65153</td>
<td>879092</td>
<td>233364</td>
<td>1112456</td>
</tr>
<tr>
<td>Growth</td>
<td>-1.4</td>
<td>0.8</td>
<td>0.3</td>
<td>-0.01</td>
<td>-0.1</td>
<td>1.7</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Housing Wealth Inequality

<table>
<thead>
<tr>
<th>Stock (units)</th>
<th>Public Share</th>
<th>Private Share</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80%</td>
<td>20%</td>
</tr>
<tr>
<td>Value (estimate)</td>
<td>50%</td>
<td>50%</td>
</tr>
</tbody>
</table>
Model

Adaptation of the Stock-Flow model

\[H_t = (1 - \delta)H_{t-1} + S_t \]
Determination of Long-run Equilibrium Price

\[F_t D(P^*, Y^d, FW_t, UC^h_t) = H_t (1 - v^*_t) \]

\[H_t = (1 - \delta) H_{t-1} + S_t \]

- **F** = total number of households (F to indicate family units)
- **D** = proportionate demand (fraction of F who want to own a house)
- **P** = long-run equilibrium price
- **Y^d** = per capita disposable income
- **FW** = per capita financial wealth, best proxy CPF balances
- **UC^h** = user cost of housing
- **H** = housing stock (cumulative housing investment)
- **v^*_t** = natural vacancy rate (assumed to be constant)
- **S** = new supply of property (residential investment in our case)
- **\delta** = House depreciation rate (set at 3% per annum; en block sale effect?)
User cost of housing (demand side)

- Mortgage payments or imputed rents
- Management fees
- Other maintenance costs
- Property tax
- Expected house price inflation
- Other short-term policy measures

 e.g. 1996 capital gain tax, loan ceiling 80% etc.

Expected profits (supply side)

- Expected price \(E_t(P_{t+1}) \)
- Labor cost
- Land price
- Building material prices
- Development and other government charges
Assuming a log-linear relationship:

\[\log F_t + \log D_t = \log H_t + constant \]

\[\log D_t = \beta_1 \log P_t^* + \beta_2 \log Y_t^d + \beta_3 \log FW_t + \beta_4 \log UC_t^h \]

Solve for:

\[\log P_t^* = \frac{1}{\beta_1}[\log H_t - \log F_t - \beta_2 \log Y_t^d - \beta_3 \log FW_t - \beta_4 \log UC_t^h] \]

Regular data series on \(F_t \), the number of households, are not available. Therefore, assume

\[F_t = kPOP_t \]

\[POP = POPR + POPF = \text{resident POP} + \text{foreign POP} \]

Proportionality doesn’t hold with respect to resident population; \(k \) seems to have increased over time due to the switch to nuclear families. But with respect to total population, \(k \) may be constant.

Total population instead of resident population will capture the demand for rental units too.
Previous formulation yields

\[
\log P_t^* = \frac{1}{\beta_1} \left[\log(\text{H} / \text{POP})_t - \beta_2 \log Y^d_t - \beta_3 \log \text{FW}_t - \beta_4 \log \text{UC}^h_t + \text{const} \right]
\]

Estimating equation:

\[
\log P_t^* = \alpha_0 + \alpha_1 \log(\text{H} / \text{POP})_t + \alpha_2 \log Y^d_t + \alpha_3 \log \text{CPF}_t + \alpha_4 t + u_t
\]

Theoretically, \(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 \cdot 100 = 0 \)
The estimated long-run equilibrium price equation:

\[\log P_t^* = constant - 2.8 \log (H / POP)_t + 2.3 \log Y_t^d + 1.6 \log CPF_t - 0.008t \]

(this is a cointegrating regression)

Calibrated equation:

\[\log P_t^* = constant - 2.8 \log (H / POP)_t + 2.2 \log Y_t^d + 1.6 \log CPF_t - 0.0025t \]
In terms of annual percentage growth rates

\[P^\text{growth} = -2.8(H\text{growth} - POP\text{growth}) + 2.2Y^d\text{growth} + 1.6CPF\text{growth} - 1.0 \]

\[= -2.8H\text{growth} + 2.2POP\text{Rgrowth} + 0.6POP\text{Fgrowth} + 2.2Y^d\text{growth} + 1.6CPF\text{growth} - 1.0 \]

Demand growth = \[-0.4P^\text{growth} + 0.8Y^d\text{growth} + 0.6CPF\text{growth} + 0.8POP\text{Rgrowth} + 0.2POP\text{Fgrowth} - 0.4\]
A breakdown of Property Price Inflation Rate

<table>
<thead>
<tr>
<th>Contribution to Long Run Property Price Inflation Rate (%) (2)x(3)</th>
<th>Elasticity Estimates (3)</th>
<th>Average annual growth (%) 2005Q1-2007Q2 (2)</th>
<th>Disposable income per capita</th>
<th>CPF per capita</th>
<th>Constant (User Cost of H)</th>
<th>Total</th>
<th>Trend Property Price Inflation Rate since 1977</th>
</tr>
</thead>
<tbody>
<tr>
<td>H stock</td>
<td>1.8</td>
<td>-2.8</td>
<td>3.7</td>
<td>3.0</td>
<td>-</td>
<td>-5.0</td>
<td>17.7</td>
</tr>
<tr>
<td>POP Resident</td>
<td>1.8</td>
<td>2.24</td>
<td>12.0</td>
<td>12.0</td>
<td>0.56</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>POP Foreign 15+</td>
<td>12.0</td>
<td>0.56</td>
<td>3.7</td>
<td>3.0</td>
<td>1.6</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>Disposable income per capita</td>
<td>3.7</td>
<td>2.2</td>
<td>3.7</td>
<td>3.0</td>
<td>1.6</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>CPF per capita</td>
<td>3.0</td>
<td>1.6</td>
<td>3.0</td>
<td>3.0</td>
<td>-1.0</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Constant (User Cost of H)</td>
<td>-</td>
<td>-1.0</td>
<td>-</td>
<td>-1.0</td>
<td></td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>17.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trend Property Price Inflation Rate since 1977

7.0
Long-run equilibrium property price

Actual PPI (log scale)
Equilibrium PPI and its trend
Projected property price inflation based on:
Population growth = 2.6%
Disposable income per capita growth = 4%
CPF balances per capita growth = 4%
Property supply (units) below (gross, not net of en block scraps)

(short run dynamics ignored)

<table>
<thead>
<tr>
<th>Year</th>
<th>Planned Supply (from ST)</th>
<th>Private Stock (Units)</th>
<th>Growth rate of H stock</th>
<th>House price inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>233364</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>2899</td>
<td>236263</td>
<td>1.2</td>
<td>18.0</td>
</tr>
<tr>
<td>2008</td>
<td>6579</td>
<td>242842</td>
<td>2.8</td>
<td>13.7</td>
</tr>
<tr>
<td>2009</td>
<td>15846</td>
<td>258688</td>
<td>6.5</td>
<td>3.2</td>
</tr>
<tr>
<td>2010</td>
<td>16727</td>
<td>275415</td>
<td>6.5</td>
<td>3.4</td>
</tr>
</tbody>
</table>
Short-run price adjustments

Dependent variable \(\Delta \ln PPI_t = \) Property Price Inflation
Sample period 1995Q1 – 2007Q2, \(R^2 = 0.78 \)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>t-value</th>
<th>t-prob</th>
<th>Partial R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.06</td>
<td>2.35</td>
<td>0.024</td>
<td>0.12</td>
</tr>
<tr>
<td>(\Delta \ln PPI_{t-1})</td>
<td>0.59</td>
<td>7.13</td>
<td>0.000</td>
<td>0.55</td>
</tr>
<tr>
<td>Disposable income growth ((\Delta \ln Y^d_t))</td>
<td>0.35</td>
<td>3.80</td>
<td>0.000</td>
<td>0.26</td>
</tr>
<tr>
<td>CPF growth ((\Delta \ln CPF_{t-1}))</td>
<td>0.48</td>
<td>1.66</td>
<td>0.104</td>
<td>0.06</td>
</tr>
<tr>
<td>User cost growth ((\Delta \ln CPI^h_t))</td>
<td>-1.65</td>
<td>-2.86</td>
<td>0.007</td>
<td>0.17</td>
</tr>
<tr>
<td>Vacancy Rate ((v_t))</td>
<td>-0.79</td>
<td>-2.57</td>
<td>0.014</td>
<td>0.14</td>
</tr>
<tr>
<td>Subsale Rate ((\Delta SUBSR_t))</td>
<td>0.18</td>
<td>1.96</td>
<td>0.057</td>
<td>0.09</td>
</tr>
<tr>
<td>Error Correction Term ((P_{t-1} - P^*_t))</td>
<td>-0.06</td>
<td>-3.62</td>
<td>0.001</td>
<td>0.24</td>
</tr>
</tbody>
</table>
Impact of a 1% increase in PPI on the macroeconomy (from ESU01 model)

(% change from the baseline)

Note the drop in consumption expenditure
Cumulative impact of a 1% increase in PPI

GDP increases only by 0.13% over the baseline after 5 years

Obviously construction investment increase is the largest, 1.6%
Price bubbles caused by

- Demand-supply imbalances
- Panic buying and speculation

Why price bubbles should be avoided

- Effect on consumption expenditure. Loss of a built-in-stabilizer
- Bubbles create persistent market disequilibrium due to the Cobb-Web phenomenon in the property market
- Income redistribution; who gets richer?
Falling consumption share of disposable income and property price

Lead Effect of Property price inflation on APC
Optimal Property Price Inflation?

This needs to be worked out.

- Historical trend of 7% price appreciation per year seems more than sufficient. For this -

 Assuming population growth = 2.6%, disposable income per capita growth = 4%, CPF balances per capita growth = 4%:

 Housing stock has to grow by 5% per year.

- Not easy given the land scarcity

- Need to manage the demand!

 Investment demand (local, foreign)

 Owner occupancy demand
You can download the slides from the SCAPE website:

NUS ➔ Dept. of Economics ➔ SCAPE ➔ ESU ➔ Conferences

http://nt2.fas.nus.edu.sg/ecs/cent/ESU/conference.htm

Thank you 😊