Impact of scale increase of container ships on the generalised chain cost

Edwin van Hassel, Hilde Meersman, Eddy Van de Voorde and Thierry Vanelislander
University of Antwerp
Department of Transport and Regional Economics
Contents

1. Rationale and setting
2. Research questions
3. Literature review
4. Model structure: maritime, port and hinterland
5. Application and testing:
 - Asia – Europe
 - US - Europe
6. Conclusions
Rationale and setting: ship size

Evolution container ship size

- Average ship size deployed fleet
- 8K+ TEU Containership Fleet Development
Rationale and setting: the chain
Research questions:

1. Does vessel scale increase lead to chain economies of scale? And in what section of the chain does it do so?
2. Is the effect route-specific, or generalizable?
Literature: general

- Three building blocks
- Before 1973:
 - Svendsen (1958): descriptive
 - Thorburn (1960): maritime and port pricing
 - Heaver and Studer (1972): ship → port
- After 1973:
 - Jansson and Shneerson (1982): pricing and queuing

Source: EC
Literature: the ship

• Technical:
 • Napier (1865): analytical
 • Bendfold (1966): iterative
 • Watson (1998): parametric

• Economic:
 • Cullinane and Khanna (1999): 8,000 TEU
 • Wijnolst et al. (1999): 18,000 TEU
 • Sys et al. (2008): 12,500 TEU
 • Ronen (2010), Khor et al. (2012): speed

Source: EC
Literature: ports and hinterland

- Roso et al. (2009), Rodrigue et al. (2010): role of inland terminals
- Blauwens et al. (2012): time and distance costs
- Grosso (2011): intermodal comparison
 - Transportation
 - Handling
 - Time consumption
 - (External costs)
The model: structure

Port choice in Hamburg-Le Havre range

Selection of a container loop and a ship in that loop (4.3)

Ship model

Port model 1
Port model 2
Port model 3
Port model 4
Port model 5
Port model 6

Hinterland model

Output as total GC per hinterland region (4.5)

Origin/Destination (Port in a loop)

Total chain

Destination/Origin (NUTS-2 regions)
The model: input

- Container loop
- Container ship
- Port + terminal
- Hinterland
- Cargo properties (VoT)
The model: the chain

In total 216 hinterland regions in the model.
The model: the ship

- Route model: distances
- Design model: size and propulsion (parametric)
- Cost model:
 - Operational (crew, insurance, consumables, repair/maintenance, management)
 - Voyage (fuel, lubricants, canal dues, port cost)
 - Capital (interest + depreciation)
SHIP MAIN INPUT DATA

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select ship size</td>
<td>13,118</td>
<td>[TEU]</td>
</tr>
<tr>
<td>Ship size Nom cap (14 ton/TEU)</td>
<td>8,841</td>
<td>[TEU]</td>
</tr>
<tr>
<td>Actual average ship size in loop (slot capacity)</td>
<td>13,459</td>
<td>[TEU]</td>
</tr>
<tr>
<td>Analysis on nom. Cap or slot capacity</td>
<td>slot</td>
<td>[-]</td>
</tr>
<tr>
<td>Selected number of ships in the loop</td>
<td>11</td>
<td>[-]</td>
</tr>
<tr>
<td>Actual number of ships in the loop</td>
<td>11</td>
<td>[-]</td>
</tr>
<tr>
<td>PAYLOAD</td>
<td>80%</td>
<td>[-]</td>
</tr>
<tr>
<td>% of design SPEED</td>
<td>90%</td>
<td>[%]</td>
</tr>
<tr>
<td>Sailing speed</td>
<td>22.50</td>
<td>[knots]</td>
</tr>
<tr>
<td>HFO</td>
<td>508</td>
<td>[EUR/tonne]</td>
</tr>
<tr>
<td>MDO</td>
<td>750</td>
<td>[EUR/tonne]</td>
</tr>
<tr>
<td>Ext_cost sea transport</td>
<td>No</td>
<td>[-]</td>
</tr>
</tbody>
</table>
The model: the port

- Shipping company
 - Port Authority
 - Pilotage
 - Towing
 - Terminal 1
 - Terminal 2
 - Terminal 3
 - Terminal 4

Competition between ports

Competition in the port

Hinterland transport
The model: the port (2)

- **Port shipping:**
 - Crew
 - Operational
 - Function of size and type of ship
 - Sailing and waiting times (buoy, lock, berth, (un-)loading)
 - External congestion cost

- **Port authority:**
 - Vessel size
 - Cargo (un-)loaded
The model: the port (3)

- Third parties:
 - Towage
 - Pilotage
 - Cargo handling
The model: the port (4)

1) Intra port Shipping cost
2) Port dues
3a) Tug(s) and Pilotage
3b) Cargo handling cost
The model: the port (5)

\[P(i) = \frac{e^{-\lambda} \lambda^i}{i!} \]

\[P(t) = \mu e^{-t\mu} \]
PORT MAIN INPUT DATA

<table>
<thead>
<tr>
<th></th>
<th>Port_1</th>
<th>Port_2</th>
<th>Port_3</th>
<th>Port_4</th>
<th>Port_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original ports in North West EU</td>
<td>Hamburg</td>
<td>Bremen</td>
<td>Zeebrugge</td>
<td>Rotterdam</td>
<td>LE HAVRE</td>
</tr>
<tr>
<td>Select ports</td>
<td>Hamburg</td>
<td>BREMEN</td>
<td>ZEEBRUGGE</td>
<td>ROTTERDAM</td>
<td>LE HAVRE</td>
</tr>
<tr>
<td>Select terminals</td>
<td>Terminal 3</td>
<td>Terminal 3</td>
<td>Terminal 3</td>
<td>terminal 3</td>
<td>terminal 1</td>
</tr>
<tr>
<td>% of cargo onboard unloaded at selected terminal</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>% of cargo onboard loaded at selected terminal</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>EXT_cost in the port region</td>
<td>No</td>
<td>[-]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congestion cost in the port region</td>
<td>No</td>
<td>[-]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The model: the hinterland
The model: the hinterland (2)

- Network model: distances
- Generalized cost model

\[GC_i = OPC_i + C_{\text{handling}} + U_i \cdot VoT \]

\[OPC_i = u_i \cdot U_i + d_i \cdot D_i \]
The model: the hinterland (3)

HINTERLAND MAIN INPUT DATA

<table>
<thead>
<tr>
<th></th>
<th>Selection</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select core hinterland</td>
<td>Yes</td>
<td>[-]</td>
</tr>
<tr>
<td>Select GDP criteria</td>
<td>All</td>
<td>[-]</td>
</tr>
<tr>
<td>Select GDP data (on GDP/cap. or GDP per Region)</td>
<td>[EUR/cap.]</td>
<td>[-]</td>
</tr>
<tr>
<td>Select GDP data YEAR</td>
<td>2010</td>
<td>[-]</td>
</tr>
<tr>
<td>% afwijing hinterland fuel cost</td>
<td>0%</td>
<td>[-]</td>
</tr>
<tr>
<td>Ext_cost Hinterland</td>
<td>No</td>
<td>[-]</td>
</tr>
</tbody>
</table>
The model: the chain

In total 216 hinterland regions in the model
The model: the cargo

<table>
<thead>
<tr>
<th>Cargo properties</th>
<th>Collected data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value Container import (average)</td>
<td>€ 40,804</td>
</tr>
<tr>
<td>Value Container export (average)</td>
<td>€ 65,286</td>
</tr>
<tr>
<td>Deprecation per year</td>
<td>3%</td>
</tr>
<tr>
<td>VoT (import)</td>
<td>€ 0.14</td>
</tr>
<tr>
<td>VoT (export)</td>
<td>€ 0.22</td>
</tr>
</tbody>
</table>

[EUR/cont]

[EUR/TEU.h]
The model: the chain loops

13,200 TEU vessel
22.5 knots
80% occupation
The model: the chain loops
The model: the chain loops
The model: the chain loops
Application and testing: RQ1

- Average cost per hinterland region, with factor related to GDP

\[AGC_i = \sum_{j=1}^{n} f_j GC_{i,j} \]

\[f_j = \frac{\left(\frac{GDP}{Capita} \right)_j . Capita_j}{\sum_{j=1}^{n} \left(\frac{GDP}{Capita} \right)_j . Capita_j} \]
Application and testing: RQ1

- Average share of chain element costs per hinterland region, with factor related to GDP

\[
ACC_i = \sum_{j=1}^{n} f_j CC_{i,j}
\]
Application and testing: RQ2
Application and testing: RQ2

- Average cost per hinterland region, with factor related to GDP
Application and testing: RQ2

- Average share of chain element costs per hinterland region, with factor related to GDP
Conclusion

• RQ1: Generalized cost decreases with growing ship size, and share of maritime section decreases, while share of hinterland section increases.

• RQ2: The observations do depend on the considered route somehow: distance sailed and port capacity do have a clear impact.
Thank you!

thierry.vanelslander@ua.ac.be
www.ua.ac.be/tpr