A Unified Model of Structural Adjustments and International Trade: Theory and Evidence from China

Hanwei Huang*, Jiandong Ju**, Vivian Z. Yue***

September, 2013 (Preliminary)

Abstract

We document the patterns of structural adjustments in Chinese manufacturing production and export using a firm level data: the production became more capital intensive while export participation increased for labor intensive sectors and decreased for capital intensive sectors. To explain these patterns, we embed heterogeneous firm (Melitz 2003) into the Dornbusch-Fischer-Samuelson model of both continuous Ricardian and Heckscher-Ohlin (1977, 1980). The equilibrium patterns of production and trade are solved both analytically and numerically. Based on structural relationships between export participation, firm mass distribution and the deep parameters of the model, we estimate the key parameters of interest. By counterfactual simulation on the estimated parameters, we decompose the driving force behind the structural adjustment into three parts: capital deepening, technology upgrading and trade liberalization.

Key Words: Structural Adjustments, Heterogeneous Firm, Comparative Advantage

JEL Classification Numbers: F12 and L16

*London School of Economics, E-mail: h.huang7@lse.ac.uk; **University of Oklahoma and Tsinghua University, E-mail: jdju@ou.edu; ***Federal Reserve Board, E-mail:vivianyue1@gmail.com. We would like to thank Chong-En Bai, Elhanan Helpman, Kala Krishna, Larry Qiu, John Romalis, Shang-Jin Wei, Yi Wen, Miaojie Yu, Susan Zhu and participants of the Tsinghua trade study group, Penn State-Tsinghua Conference, China Summer Institute 2012, AEA 2013, RES 2013, SED 2013 and CCER international economics workshop for helpful comments. However, all errors are our responsibilities.
1 Introduction

In this paper we study interactions between changes in firm’s distribution within a sector and resource reallocations across sectors. Using the firm level data in China from 1999 to 2007, we document seemingly puzzling data patterns: comparing the data in 2007 with that in 1999, productions became more capital intensive. On the other hand, however, exports became more labor intensive.

Following Schott (2003), we define industries as “HO aggregate” and regroup firms into 100 industries according to their capital share. Comparing the data in 2007 with that in 1999, the share of firm numbers (the number of firms in an industry/total number of firms), the share of employment (industrial employment/total employment) and the share of output (industrial output/total output, output measured by value added or sales), all increase in capital intensive industries but decline in labor intensive industries. However, across industries, the share of exporting firm numbers (the number of exporting firms in an industry/total number of exporting firms) increases in labor intensive industries but decreases in capital intensive industries. Within an industry, the share of exporting firms (number of exporting firms/number of total firms in the industry) increases in labor intensive industries but decreases in capital intensive industries; firms in labor intensive industries export a larger fraction of their total output while firms in capital intensive industries export a smaller fraction of their total output.

China was clearly more capital abundant in 2007 than in 1999. According to the classical Heckscher-Ohlin theory, China should produce and export more capital intensive goods. Thus the change in production structures we observed is consistent with the classical HO theory, but the changes in export structures in the data seem to contradict the theory. To understand the seemingly puzzling data pattern, we introduce firm’s heterogeneity into the HO and Ricardian framework to explore the driving forces behind. To be more specific, we introduce Melitz-type of firm’s heterogeneity into the DFS framework of continuous Ricardian and Heckscher-Ohlin model (Dornbusch, Fischer and Samuelson 1977, 1980).

In the baseline model, we assume the Ricardian comparative advantage are in line with
the Heckscher-Ohlin comparative advantage. We show that in equilibrium, there are two cut-off industries: the most capital intensive industries and labor intensive industries are specialized by the capital abundant country and labor abundant country respectively; for industries with intermediate factor intensities, both country produce. In industries that a country specialize, we show that the export participation (measured by export probability or export intensity) remain constant and does not vary with industrial factor intensity. In industries that both countries produce, the export participation decreases with capital intensity in the labor abundant country while it increases with capital intensity in the capital abundant country. The Chinese data supports the theoretical predictions on labor abundant country.

Using the framework, we find the numerical solution and perform comparative statics on capital deepening, trade liberalization and technology changes. The goal is to disentangle the effects of these channels and shed light on the Chinese data patterns. We find that capital deepening and technology changes make productions and exports become more capital intensive in a labor abundant country: it produces and exports more in capital intensive industries and *vice versa* in labor intensive industries. However, trade liberalization makes productions and exports more labor intensive since its comparative advantage is strengthened. Given that we observe Chinese production became more capital intensive while export became more labor intensive, none of these comparative statics could explain what we observe in the Chinese data.

To find out the driving forces behind the structural adjusments, we need to estimate the parameters of the model for both years. Using the structural relationship between export participation, firm mass distribution and the deep parameters of the model, we estimate the key parameters of interests: endowment, trade cost and technology. By running counterfactual simulations that replace year 1999 parameters with year 2007 parameters, we find changes in endowments shift production towards more capital intensive sectors and increases export participation in all sectors, changes in trade costs also shift production towards more capital intensive sectors but press down export participation in all sectors, and
changes in technology tilts output distribution slightly to more labor intensive sectors and only increase export participation in middle range industries. Our preliminary exploration seems to suggest that changes in endowment structure between China and Rest of World, thus the Heckscher-Ohlin comparative advantage is the main driving force.

Our paper makes several contribution the literature. Firstly, we find relationships between export participation, firm mass distribution and deep parameters of the model which allow for structural estimation. This is a methodological complement of Eaton and Kortum’s (2002) work in which they relate trade shares with technology and trade cost. Secondly, our empirical exploration, which we study how comparative advantages change over time, is related with the recent works on evolving comparative advantage, e.g., Costinot et. al (2012), Levchenko and Zhang (2013). In both their works, they use the EK approach which relies on multiple country trade flow data while we show that one can infer comparative advantage by working on the trade data of a single nation. Finally, our model is closely related with following works. Romalis (2004) introduces monopolistic competition model into DFS framework. We extend his model by allowing firms to be heterogeneous within a sector. Bernard, Redding and Schott (2007) incorporate Melitz (2003) model into the two-sector HO framework. We extend their work to a continuum sectors of DFS framework and include Ricardian comparative advantage. Comparing to these two papers, our model is one step closer to the data, and therefore allows us to quantitatively analyze China’s practice. Lu (2010) also incorporates heterogeneous firm into a Heckscher-Ohlin model with multiple industries. Okubo (2009) and Fan et. al (2011) combine DFS of Ricardian with Melitz typed heterogeneous firm. Our model is more general than their papers in the sense that we endogenize both trade patterns and firm mass across sectors. More importantly, we focus on interactions between changes in firm’s distribution within a sector and resource reallocations across sectors overtime, which all papers do not study.

The following parts of the paper are organized as follows. Section 2 presents the data patterns we observed from the Chinese firm level data. Section 3 develops the model and section 4 is equilibrium analysis. We do comparative statics and study the effect of trade
liberalization, capital deepening and technology changes in Section 5.

2 Motivating Evidences

In this section we present several stylized facts about the adjustments in production and trade structure over time. The data we use is the Chinese Annual Industrial Survey. It covers all State Own Enterprise (SOE) and non-SOE with sales higher than 5 million RMB Yuan. The dataset provides information on balance sheet, profit and loss, cash flow statements of firms, and firm’s identification, ownership, export, employment, capital stock, etc. Our focus is on manufacturing firms (thus exclude utility and mining firms) which contribute more than 90% of the total Chinese manufacturing exports in aggregate trade data. To clean the data, we follow Brandt et al (2011) and drop firms with missing, zero, or negative capital stock, export and value added, and only include firms with employment larger than 8. And we also drop firms with capital intensity larger than one or less than zero where capital share is defined as: $1 - \frac{\text{wage}}{\text{value added}}$.\(^1\) Since the focus of this paper are changes overtime, we look at data of year 1999 and 2007.\(^2\) The Statistics Summary of the data after cleaning is shown in Table 1.

\(^1\) Wage is defined as the sum of wage payable, labor and employment insurance fee, and total employee benefits payable. In the 2007 data, there are also information about housing fund and housing subsidy, endowment insurance and medical insurance, and employee educational expenses. Adding these 3 variables would increase the average labor share but only slightly (from 0.293 to 0.308). To be consistent, we don’t include them.

\(^2\) We don’t use year 2008 and years after because we don’t have the complete data and the aftermath of the financial crisis is of great concern.
Table 1: Statistical Summary of Main Variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>mean in 1999</th>
<th>mean in 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of firms</td>
<td>117702</td>
<td>291473</td>
</tr>
<tr>
<td>revenue(¥1,000)</td>
<td>50808</td>
<td>117744</td>
</tr>
<tr>
<td>value_added(¥1,000)</td>
<td>14098</td>
<td>31942</td>
</tr>
<tr>
<td>newly_sales(¥1,000)</td>
<td>49187</td>
<td>115296</td>
</tr>
<tr>
<td>export(¥1,000)</td>
<td>8880</td>
<td>23896</td>
</tr>
<tr>
<td>employee</td>
<td>328</td>
<td>218</td>
</tr>
<tr>
<td>total profit(¥1,000)</td>
<td>1854</td>
<td>6804</td>
</tr>
<tr>
<td>wage(¥1,000)</td>
<td>3363</td>
<td>5417</td>
</tr>
<tr>
<td>profit/revenue</td>
<td>0.011</td>
<td>0.043</td>
</tr>
<tr>
<td>proportion of exporters</td>
<td>0.252</td>
<td>0.248</td>
</tr>
<tr>
<td>proportion of SOE</td>
<td>0.258</td>
<td>0.041</td>
</tr>
<tr>
<td>capital share</td>
<td>0.669</td>
<td>0.707</td>
</tr>
</tbody>
</table>

Notes: This is for the sample after data cleaning.

As we mentioned earlier, industries are defined as “HO aggregate” following Schott (2003). That is, we put all firms in the same year together and then regroup them according to their capital share. For example, firms with capital share between 0 and 0.01 are lumped together and defined as industry 1. In total, we have 100 industries.

Schott (2003) looks at product level variations, while we investigate variations at the firm level. From Table 2, we find there are indeed large variations of capital share within the 2 digit Chinese Industry Classification (CIC) of industry and significant difference in capital intensity between exporters and non-exporters. Interestingly, we find that except for Tobacco (industry 16) and Recycling (industry 43), capital share is significantly lower for exporters. This is different from Alvarez and López (2005)’s finding that Chilean

3On average, exporters are less capital intensive than non-exporters for all firms. The gap is larger in 2007 than 1999.
exporters are more capital intensive than non-exporters. It is in line with Bernard et al’s (2007b) speculation that exporters in developing countries should be more labor intensive than non-exporters given their comparative advantage in labor intensive goods.4

Fact 1: Under the industry definition according to final end (CIC), there are large variations of capital share within each industry. Exporters are less capital intensive than non-exporters (exceptions would be tobacco and recycling in 2007).

2.1 Production Structures

This subsection describes how the overall production structures change between 1999 and 2007. In the figures below, industries are defined according to capital intensities of firms and we regroup firms into 100 industries. The horizontal axis of the graphs is industry index and higher numbers correspond to higher capital share.

4 For the same data, Ma et al (2011) use capital labor ratio (or capital wage payment ratio) as indicator of factor intensity. They also find Chinese exporters are less capital intensive than non-exporters. Based on transaction data, they find exporters choose to produce more labor intensive products which is consistent with the comparative advantage of China. Thus our finding is consistent with their findings.
Figure 2: Value Added Share and Sales Share

Fact 2: Compared with 1999, the overall Chinese production became more capital intensive in 2007.
Notes: This is the 2-digit industry definition from Chinese National Bureau of Statics.

A direct evidence is from Table 1, the average of capital share is 0.669 in 1999 and 0.707 in 2007. Thus we do see the aggregate production became more capital intensive.\(^5\) Other

\(^5\)Thus the overall production is very concentrated on capital intensive industries. Hsieh and Klenow (2009) point out that labor share is significantly less than aggregate labor share in manufacturing reported
than this piece of evidence, there are several others using different measures. We firstly look at number of firms and labor employment for each industry. As can be seen from Figure 1, during 1999-2007, more firms are producing capital intensive industries while less firms are producing in labor intensive industries. At the same time, workers are moving out of labor intensive industries into more capital intensive industries. Thus there is a significant reallocation of resources towards capital intensive industries. In terms of output, from Figure 2, we find that firms in capital intensive industries are accounting for larger and larger fraction of value added and sales. The messages from Figure 1 and 2 could also be summarized by Table 3 below. In Table 3, we compute the share of firms with capital share higher than the average capital share in 1999. Clearly, we find the production structures become more capital intensive in 2007.

Table 3: Structural Adjustment of Production

<table>
<thead>
<tr>
<th>Variable</th>
<th>firm number share</th>
<th>employment share</th>
<th>value added share</th>
<th>sales share</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0.648</td>
<td>0.585</td>
<td>0.860</td>
<td>0.860</td>
</tr>
<tr>
<td>1999</td>
<td>0.588</td>
<td>0.459</td>
<td>0.744</td>
<td>0.706</td>
</tr>
<tr>
<td>Difference</td>
<td>0.061</td>
<td>0.126</td>
<td>0.116</td>
<td>0.154</td>
</tr>
</tbody>
</table>

Notes: The numbers in the 1st and 2nd row are the corresponding share for firms with capital share higher than the average capital share in 1999 (0.669). The 3rd row is the difference between 2007 and 1999 (2007 minus 1999).

We also compare the labor productivity between the two years in Figure 3. Labor productivity is in terms of real value added per worker so as to make it comparable over years. Real value added is calculated using the input and output pricing index constructed in the Chinese input-output tables and the national accounts (roughly 50%). They argue that it could be explained by non-wage compensation and assume it a constant fraction of a plant’s wage compensation and adjust it to be the same as aggregate reports. Since we only care about the distribution, a constant adjustment would not help thus we simple use the original value.
by Brandt et al (2011). From the left panel, the labor productivity is higher for capital intensive industries and it increases from 1999 to 2007 for all industries. From the right panel, it is clear that labor productivity increases more in labor intensive industries.

Fact 3: *The magnitude of labor productivity growth from 1999 to 2007 decreases with capital intensity; that is, labor productivity grows faster in labor intensive industries.*

2.2 Trade Structure

In this subsection, we focuses on how the trade structure changes over time. The most important findings are:

Fact 4: *From 1999 to 2007, the exporting number share became more labor intensive.*

Fact 5: *Export participation (measured by fraction of exporters and sales exported) increases in labor intensive industries while the opposite is true in capital intensive industries.*

In Figure 4, we plot the export share in terms of firm number and value of export. From the left panel, we find the number share of exporters decrease in capital intensive industries.
Figure 4: Export Share in Terms of Firm Number and Value

and increase in labor intensive industries in general. From the right panel, we find the value of export share is more or less the same for both years. In Figure 5, we focus on how export changes within each industries. From the left panel, we find the proportion of exporters in 2007 is higher than 1999 in labor intensive industries while the opposite is true for capital intensive industries. In terms of sales exported, we find it increases in general over time but more significantly for labor intensive industries. In fact, for the most capital intensive ones, it even decreases.

The messages from Figure 4 and Figure 5 could also be summarized by Table 4. By comparing with it with Table 3, we find a puzzling observation here. The production clearly became more capital intensive in 2007 than 1999 (if measured by export value share, the difference is +0.013 between 2007 and 1999 while the difference of total sales share +0.154 in Table 3). However, export did not become as capital intensive as production does. In fact there is evidence that it become more labor intensive (if measure by export number share difference, it is -0.018 versus firm number share difference +0.061 in Table 3). As we have said in the introduction, it is puzzling in the sense that from standard trade theory, we would expect the export also become more capital intensive when the production
becomes more capital intensive.

Our finding that Chinese export didn’t become more capital intensive seems to contradict works on the rising sophistication of Chinese export (Schott 2008, Wang and Wei 2010). Though China might expand its export by increasing the extensive margin on more capital intensive industries, there is no guarantee that the overall export value share or exporter number share in capital intensive industries also increase. If more firms became exporters in labor intensive and their export value increased more, the overall Chinese export could indeed became more labor intensive. In fact, Schott (2008) finds that though Chinese export overlaps more and more with OECD countries, it also becomes more and more cheaper in terms of unit value. He suggests that it might because that firms produce according to their comparative advantage and focus on their core competencies. This view is elaborated by Ma et al (2011) in which they focus on product switching within firms while we focus on firm switching within and across industries.

In Figure 6, we also compare the ages of firms over years. From the left panel, we find that exporters are on average younger than others for all industries. However, from the right panel, we find that exporters are as old as others in labor intensive industries but
significantly older than others in capital intensive industries. On average, capital intensive firms are younger and firms in 2007 are younger than firms in 1999 which indicating lots of new firms coming in. We will look at entry and exit in next subsection.

Fact 6: Firm age decreases with capital intensity for both years. In 1999, exporters were younger than non-exporters. However, exporters became significantly older than non-exporters in capital intensive industries in 2007.

<table>
<thead>
<tr>
<th>Variable</th>
<th>exporter number share</th>
<th>export value share</th>
<th>average fraction of exporter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0.487</td>
<td>0.667</td>
<td>0.194</td>
</tr>
<tr>
<td>1999</td>
<td>0.505</td>
<td>0.654</td>
<td>0.217</td>
</tr>
<tr>
<td>Difference</td>
<td>-0.018</td>
<td>0.013</td>
<td>-0.023</td>
</tr>
</tbody>
</table>

Notes: The numbers in the 1st and 2nd row are the corresponding share for firms with capital share higher than the average capital share in 1999 (0.669). The 3rd row is the difference between 2007 and 1999 (2007 minus 1999).

2.3 Entry and Exit

In this subsection we look at firm entry and exit. On the left panel of Figure 7, entry firms are defined as those appear in 2007 but not in 1999 and *vice versa* for exit firms. On the right panel, entry of exporter are defined as entry firms that export and continuing firms that start to export while exit of exporters are exit firms that export and continuing firms that stop export. Figure 7 simply plot the ratio of the number for the two types of firms. From the left panel, we find that there are relatively more firms entering capital intensive industries than labor intensive industries. From the right panel, we find that the

The concept of entry and exit is different from the literature since we are comparing two distant years. Another concern is that this might not be real entry or exit since the survey is censored at sales above 5 million Yuan.
ratio of entry and exit has an inverse "U" shape: first increases and declines afterwards. This finding is summarized as follows:

Fact 7: The ratio of firm entry and exit increases with capital intensity while export firm entry exit ratio firstly increases then decreases with capital intensity.

In principle, firm entry and exit could explain much of the facts above. For example, a significant entry in capital intensive industries naturally leads to an increase in firm number share and employment share of capital intensive industries demonstrated in Figure 1 and Figure 2. And if entry firms are less likely to export, then the proportion of exporters should decrease in capital intensive industries given its high entry. And since for labor intensive industries the entry of exporter is higher than overall entry, we expect the fraction of exporters would increase in labor intensive industries. Finally, more firms entering capital intensive industries will drive down the average age. Relative less new exporters in the most capital intensive industries means that the age of exporters in the capital intensive industries will remain higher.

However, why firm entry and exit demonstrate such a pattern is still a question. Is it caused by capital deepening or trade liberalization? In the reasoning above, we make
the assumption that entrants are less productive and less likely to be exporters. This is a standard feature of Melitz (2003) model with heterogeneous firm. Moreover, the figures above indicates a key role played by factor intensity. In the section below, we will present a model with these two features and see if it could provide us with a solid explanation.

3 Model Set Up

Our model incorporates heterogenous firm (Melitz 2003) into a Ricardian and Heckscher-Ohlin theory with a continuum of industries (Dornbusch, Fisher and Samuelson 1977, 1980). There are two countries: North and South. We assume the home country to be South. The two countries only differ in their technology and factor endowment. Without lost of generality, we assume that home country is labor abundant, that is: \(L/K > L^*/K^* \), and has Ricardian comparative advantage in more labor intensive industries. \(^7\) There is a continuum of industries \(z \) on the interval of \([0, 1] \). The index \(z \) is also industry capital intensity and higher \(z \) stands for higher capital intensity. Each industry is inhabited by

\(^7\) Variables with \(* \) are foreign country (North country) variables. To simplify the notation, we omit it except where important.
heterogeneous firms which produce different varieties of goods and sell in a market with monopolistic competition.

3.1 Demand Side

The economy is inhabited by a continuum of identical and infinitely lived households that can be aggregated into a representative household. The representative household’s preference over different goods is summarized by the following Cobb-Douglas utility function:

\[
U = \int_0^1 b(\omega) \ln Q(\omega) d\omega, \quad \int_0^1 b(\omega) d\omega = 1
\]

where \(b(\omega) \) is the expenditure share on each industry and \(Q(\omega) \) is the lower-tier utility function over consumption of individual varieties \(q_\omega(\omega) \) given by the following CES aggregation. \(P(\omega) \) is the dual price index of \(Q(\omega) \) defined over price of different varieties \(p_\omega(\omega) \)

\[
Q(\omega) = \left(\int_{\omega \in \Omega_z} q_\omega(\omega)^{\rho} d\omega \right)^{1/\rho}, \quad P(\omega) = \left(\int_{\omega \in \Omega_z} p_\omega(\omega)^{1-\sigma} d\omega \right)^{1/(1-\sigma)}
\]

Here \(\Omega_z \) is the varieties available for industry \(z \) and \(0 < \rho \leq 1 \) so that the elasticity of substitution \(\sigma = \frac{1}{1-\rho} > 1 \). The aggregates can be used to derive the demand function for individual varieties

\[
q_\omega(\omega) = Q(\omega) \left(\frac{p_\omega(\omega)}{P(\omega)} \right)^{-\sigma}
\]

3.2 Production

Following the standard assumptions of Melitz (2003), we assume that production incurs a fixed cost each period which is the same for all firms in the same industry and the variable cost varies with firm productivity. Firm productivity is denoted as \(A(z) \varphi \) where \(A(z) \) is a common component for all firms in industry \(z \) while \(\varphi \), the heterogeneous productivity, is drawn randomly by firms from a distribution \(G(\varphi) \). Following Romalis (2004) and Bernard et al (2007a), we assume that fixed cost are paid using capital and labor with factor intensity
the same as production in that industry. To be specific, we assume that the total cost function looks like:

\[\Gamma(z, \varphi) = (f_z + \frac{q(z, \varphi)}{A(z)\varphi})r^zw^{1-z} \]

(3.2)

And we assume that the relative industry specific productivity for home and foreign \(\varepsilon(z) \) is:

\[\varepsilon(z) \equiv \frac{A(z)}{A^*(z)} = \lambda A^z, \lambda > 0, \ A > 0 \]

(3.3)

Here \(\lambda \) is a parameter capturing the absolute advantage of home country: higher \(\lambda \) means home has higher relative industry specific productivity for all industries. And \(A \) is parameter capturing the comparative advantage. If \(A > 1 \), home country is relatively more productive in more capital intensive industries and has Ricardian comparative advantages in these industries. If \(A = 1 \), then \(\varepsilon(z) \) doesn’t vary with \(z \) and there is no role for Ricardian comparative advantage. Given our assumption that home has Ricardian comparative advantage in more labor intensive industries, we have \(0 < A < 1 \).

The presence of fixed cost implies that each firm will produce only one variety. Profit maximization implies that the equilibrium price is a constant mark-up over the marginal cost. Trade is costly and firms need to ship \(\tau \) units of goods for 1 unit of goods to arrive in foreign market. This is the standard "iceberg cost" assumption. Then we have,

\[p_{xz}(\varphi) = \tau p_{zd}(\varphi) = \tau \frac{\frac{\mu^z}{P(z)\varphi P(z)}}{pA(z)\varphi} \]

(3.4)

where \(p_{xz}(\varphi) \) and \(\tau p_{zd}(\varphi) \) are the exporting and domestic price respectively. Given the pricing rule, the revenue from domestic and foreign market of firms are:

\[r_{zd}(\varphi) = b(z)R(bA(z)\varphi P(z))^{\sigma-1} \]

(3.5)

\[r_{zx}(\varphi) = \tau^{1-\sigma} (\frac{P(z)\varphi}{P(z)})^{\sigma-1} (\frac{R^*}{R})r_{zd}(\varphi) \]

(3.6)
Where R and R* are aggregate revenue for home and foreign respectively. Then the revenue of firms are:

\[
r_z(\varphi) = \begin{cases}
 r_{zd} & \text{if it sells only domestically} \\
 r_{xx} + r_{zd} & \text{if it exports}
\end{cases}
\]

For firms that export, they need to pay a per-period fixed cost \(f_{xx} r^x w^{1-z} \) which requires both labor and capital. Therefore, the firms’ profits could be divided into portions earned from domestic and foreign market:

\[
\pi_{zd}(\varphi) = \frac{r_{zd}}{\sigma} - f_{zd} r^x w^{1-z} \\
\pi_{xx}(\varphi) = \frac{r_{xx}}{\sigma} - f_{xx} r^x w^{1-z}
\]

(3.7)

So the total profit is given by:

\[
\pi_z(\varphi) = \pi_{zd}(\varphi) + \max\{0, \pi_{xx}(\varphi)\}
\]

(3.8)

Then a firm drawing productivity \(\varphi \) produces if its revenue at least covers the fixed cost that is \(\pi_{zd}(\varphi) \geq 0 \) and exports if \(\pi_{xx}(\varphi) \geq 0 \). This defines the zero-profit productivity cut-off \(\varphi_{zd} \) and costly trade zero profit productivity cut-off \(\varphi_{xx} \) which satisfy:

\[
r_{zd}(\varphi_{zd}) = \frac{\sigma f_{zd} r^x w^{1-z}}{\sigma - f_{zd} r^x w^{1-z}} \\
r_{xx}(\varphi_{xx}) = \frac{\sigma f_{xx} r^x w^{1-z}}{\sigma - f_{xx} r^x w^{1-z}}
\]

(3.9)

(3.10)

Using the two equations above and equation (3.5) (3.6), we could derive the relationship between the two productivity cut-offs which is:

\[
\varphi_{xx} = \Lambda z \varphi_{zd}, \text{ where } \Lambda z = \frac{\tau P(z) f_{xx} R}{P(z) R^*} \frac{1}{\sigma - f_{xx} r^x w^{1-z}}
\]

(3.11)

\(\Lambda z > 1 \) implies selection into export market: only the most productive firms export. The empirical literature strongly supports selection into market and we focus on parameters
where exporters are always more productive following Melitz (2003) and Bernard et al (2007a). Then the decision of firms on production and export are shown in Figure 8. For all firms that enter each period, a fraction of $G(\bar{\varphi}_z)$ exit upon entry since they do not earn positive profit at all. And $1 - G(\bar{\varphi}_{xx})$ fraction of firms export since they draw sufficiently high productivity and earn positive profit from both domestic and foreign sales. As for firms whose productivity is between $\bar{\varphi}_{xx}$ and $\bar{\varphi}_z$, they only sell in domestic market. So the ex ante probability of exporting conditional on successful entry is

$$
\chi_z = \frac{1 - G(\bar{\varphi}_{xx})}{1 - G(\bar{\varphi}_z)}
$$

3.3 Free entry

If a firm does produce, it faces a constant probability δ in every period of bad shock that would force it to exit. The steady-state equilibrium is characterized by a constant mass of firms entering an industry M_{ez} and constant mass firms producing M_z. Then in steady state equilibrium, the mass of firms that enter must equal to the firms that die:

$$
(1 - G(\bar{\varphi}_z))M_{ez} = \delta M_z
$$

In an equilibrium with positive production, we require that the value of entry V_z equals to the cost of entry: $f_{ez}r^zw^{1-z}$. We assume that the entry cost $f_{ez}r^zw^{1-z}$ also uses capital

Lu (2010) explore the possibility that $\Lambda_z < 1$ and documents that in the labor intensive sectors of China, exporters are less productive. But our own empirical findings in the following section provides little support that. In fact, according to Dai et al (2011), Lu’s result is solely driven by processing exporters. And using TFP as productivity measure instead of value added per worker, even including processing exporters still support that exporters are more productive.
and labor. The expected profit of entry \(V_z \) comes from two parts: the \textit{ex ante} probability of successful entry times the expected profit from domestic market until death and \textit{ex ante} probability of exporting times the expected profit from the export market until death. Then we have the following free entry condition

\[
V_z = \frac{1 - G(\tilde{\varphi}_z)}{\delta}(\pi_{zd}(\tilde{\varphi}_z) + \chi_z \pi_{xx}(\tilde{\varphi}_{xx})) = f_{ez} \pi^z_{z} w^{1-z} \tag{3.14}
\]

where \(\pi_{zd}(\tilde{\varphi}_z) \) and \(\chi_z \pi_{zd}(\tilde{\varphi}_{xx}) \) are the expected profitability from successful entry. And \(\tilde{\varphi}_z \) is the average productivity of all producing firms while \(\tilde{\varphi}_{xx} \) is the average productivity of all exporting firms in industry \(z \). They are defined as follows:

\[
\tilde{\varphi}_z = \left[\frac{1}{1 - G(\tilde{\varphi}_z)} \int \varphi^{\sigma-1} g(\varphi) \, d\varphi \right]^{\frac{1}{\sigma-1}}
\]

\[
\tilde{\varphi}_{xx} = \left[\frac{1}{1 - G(\tilde{\varphi}_{xx})} \int \varphi^{\sigma-1} g(\varphi) \, d\varphi \right]^{\frac{1}{\sigma-1}} \tag{3.15}
\]

Combining with the zero profit condition (3.9), (3.10), we have (3.16) below which determines the two productivity cut-offs with the equation (3.11).

\[
\frac{f_z}{\delta} \int_{\tilde{\varphi}_z}^{\infty} \left(\frac{\varphi}{\tilde{\varphi}_z} \right)^{\sigma-1} - 1 \, g(\varphi) \, d\varphi + \frac{f_{xx}}{\delta} \int_{\tilde{\varphi}_{xx}}^{\infty} \left(\frac{\varphi}{\tilde{\varphi}_{xx}} \right)^{\sigma-1} - 1 \, g(\varphi) \, d\varphi = f_{ez} \tag{3.16}
\]

3.4 Market Clearing

In equilibrium, we require that the sum of domestic and foreign spending on domestic varieties equals to the value of domestic production (total industry revenue, \(R_z \)) for every industry in both countries:

\[
R_z = b(z)RM_z \left(\frac{P_{zd}(\tilde{\varphi}_z)}{P(z)} \right)^{1-\sigma} + \chi_z b(z) R^z M_z \left(\frac{\tau P_{zd}(\tilde{\varphi}_{xx})}{P(z)^*} \right)^{1-\sigma} \tag{3.17}
\]
where the price index $P(z)$ is given by the equation below. R^*_z and $P(z)^*$ follow symmetric definitions.

$$P(z) = [M_z(pzd(\bar{\varphi}_z))^1-\sigma + \chi_z^* M_z^*(\tau pzd(\bar{\varphi}_{zzz}^*))^{1-\sigma}]^{1/\sigma}$$ \hspace{1cm} (3.18)

The factor market clearing condition is:

$$L = \int_0^1 l(z)dz, \quad L^* = \int_0^1 l^*(z)dz \hspace{1cm} (3.19)$$

$$K = \int_0^1 k(z)dz, \quad K^* = \int_0^1 k^*(z)dz$$

Before we proceed, there assumptions are made here so as to simplify the algebra. Firstly, we assume that the productivity distribution is Pareto and the density function is given by

$$g(\varphi) = a\theta^a \varphi^{-(a+1)}, a + 1 > \sigma$$

where θ is a lower bar of productivity: $\varphi \geq \theta$. Secondly, we assume that the coefficients of fixed costs are the same for all industries:9

$$f_z = f_{z'}, f_{zx} = f_{z'x}, f_{ez} = f_{ez'}, \forall z \neq z'.$$

Finally, we assume that the expenditure $b(z)$ is the same for all industries at home and abroad, that is:

$$b(z) \equiv b(z'), \forall z \neq z'.$$

9 f_z, f_{zx}, f_{xx} could still differ from each other.
3.5 Equilibrium

The equilibrium consists of the vector of \(\{ \bar{\varphi}_z, \bar{\varphi}_{xx}, P(z), p_z(\varphi), p_{xx}(\varphi), r, w, R, \bar{\varphi}_z^*, \bar{\varphi}_{xx}^*, P(z)^*, p_z(\varphi)^*, p_{xx}(\varphi)^*, r^*, w^*, R^* \} \) for \(z \in [0,1] \). The other endogenous variables are given by these variables. The equilibrium vector is determined by the following conditions for each country:

(a) Firms’ pricing rule (3.4) for each industry and each country;

(b) Free entry condition (3.14) and relationship between zero profit productivity cut-off and costly trade zero profit productivity cut-off (3.11) for each industry and both countries;

(c) Factor market clearing condition (3.19);

(d) The pricing index (3.18) implied by consumer and producer optimization;

(e) The goods market clearing condition of world market (3.17).

Proposition 1 There exists a unique equilibrium given by \(\{ \bar{\varphi}_z, \bar{\varphi}_{xx}, P(z), p_z(\varphi), p_{xx}(\varphi), r, w, R, \bar{\varphi}_z^*, \bar{\varphi}_{xx}^*, P(z)^*, p_z(\varphi)^*, p_{xx}(\varphi)^*, r^*, w^*, R^* \} \).

Proof. See Appendix.

4 Equilibrium Analysis

The presence of trade cost, multiple factors, heterogeneous firm, asymmetric countries and infinite industry make it very difficult to find a close-form solution to the model. In this section, we firstly derive several analytical properties. Then we find the numerical solution and solve the equilibrium factor prices and other endogenous variables.

4.1 Analytical Properties

Proposition 2 (a) As long as home and foreign country are sufficiently different in endowment or technology, then there exist two factor intensity cut-offs \(0 \leq \bar{z} < \bar{\tau} \leq 1 \) such that the labor abundant home country specializes in the production within \([0, \bar{z}] \) while the
capital abundant foreign specializes in the production within \([\bar{z}, 1]\) and both countries produce within \((\bar{z}, \bar{z})\).

(b) If there is no variable trade cost \((\tau = 1)\) and fixed cost of export equals to fixed cost of production for each industry \((f_{xz} = f_z, \forall z)\), then \(z = \bar{z}\). This is the classic case of complete specialization.

Proof. See Appendix.

This proposition is on the production and export pattern for each country. The basic result is illustrated in the Figure 9. Countries engage in inter-industry trade for industries within \([0, \bar{z}]\) and \([\bar{z}, 1]\) due to specialization. This is where the comparative advantage in factor abundance or technology (classical trade power) dominates trade costs and the power of increasing return and imperfect competition (new trade theory). And they engage in intra-industry trade for industries within \((\bar{z}, \bar{z})\), this is where the power of increasing return to scale and imperfect competition dominates the power of comparative advantage (Romalis, 2004). Thus if the two countries are very similar in their technology and endowments, we would expect the power of comparative advantage is very weak. Then there will be no specialization and only intra-industry trade between the two countries. That is to say, \(\bar{z} = 0\) and \(\bar{z} = 1\).

In the classical DFS model with zero transportation costs, factor price equalization (FPE) prevails and the geographic patterns of production and trade are not determined when the two countries are not too different. With costly trade and departure from FPE, we are able to determine the pattern of production. This is the property of Romalis model (2004) which we are able to inherit. However, his assumption of homogeneous firm leads to the stark feature that all firms export. With firm heterogeneity coming in, we have the following proposition 3 and 4 on the variation of export participation across industries.

Proposition 3 (a) Within \((\bar{z}, \bar{z})\), the zero profit productivity cut-off decreases with capital intensity while the costly trade zero profit cut-off increases with capital intensity in home country and vice versa in foreign country.

(b) Both cut-offs remain constant in industries that either country specializes.
Figure 9: Productivity Cutoffs and Firm Decision

Figure 10: Productivity Cutoffs across Industries in Home and Foreign Countries

Proof. See Appendix.

Conclusion (a) of Proposition 3 does not depend on the assumption of Pareto distribution for firm specific productivity. Figure 10 illustrates the result of this proposition. It is a direct extension of Bernard et al (2007a). They prove that under the two industries case, the productivity cutoffs will be closer in the comparative advantage industry. We generalize their result and an important extension is that the cut-offs do not vary with factor intensity in industries that countries specialize. And the nice property of this proposition is that home country and foreign country are symmetric.

Proposition 4 (a) Within the specialization zone \([0, z]\) and \([z, 1]\), the export probability \(\chi_z\)
is a constant. For the industries that both country produce \((\bar{z},\bar{v})\), the export probability \(\chi_z\) decreases with industry capital intensity in the labor abundant country and vice versa in the capital abundant country. To be specific, we have

\[
\chi_z = \begin{cases} \frac{R^*}{\bar{R}} & z \in [0, \bar{z}] \\ \frac{\bar{R}^*}{\bar{R} - e^{\alpha}g(z)} & z \in (\bar{z}, \bar{v}) \end{cases}
\]

where \(g(z) = (\frac{w}{m^*}(\frac{r/w}{r^*/w^*))^{\frac{1}{1-\alpha}})\) and

\[
\frac{\partial \chi_z}{\partial z} = \frac{(1 - \tau^{-2a}f^2)e^\alpha ga}{(e^\alpha f g(z) - \tau^{-a})^2} (\ln(A) - \frac{\sigma}{\sigma - 1} \ln(\frac{r/w}{r^*/w^*})), \text{ if } z \in (\bar{z}, \bar{v})
\]

(b) The export intensity is: \(\gamma_z = \frac{f \chi_z}{1 + f \chi_z}\) which follows the same pattern as \(\chi_z\).

Proof. See Appendix.

Proposition 4 is a straightforward implication of proposition 3. In general, it tells us that the stronger the power of comparative advantage is, the more that firms participate in international trade. However, for industries that countries specialize, export participation is a constant. Figure 11 depicts this idea. And we also find that the sign of \(\frac{\partial \chi_z}{\partial z}\) depends on two terms within \((\bar{z}, \bar{v})\): the Ricardian Comparative Advantage \(\ln(A)\) and the Heckscher-Ohlin Comparative Advantage \(\ln(\frac{r/w}{r^*/w^*})\). And the magnitude of the HO Comparative Advantage depends on \(\sigma\), the elasticity of substitution between varieties, or say imperfect competition: the smaller \(\sigma\) is, the larger that different industries differ in their export participation. Since \(A < 1\) and \(\frac{K}{\bar{v}} < \frac{K^*}{\bar{v}^*}\) (or \(\frac{r/w}{r^*/w^*} > 1\)), home country has both Ricardian Comparative Advantage and Heckscher-Ohlin Comparative Advantage in more labor intensive industries. Thus we expect \(\frac{\partial \chi_z}{\partial z} < 0\) and export probability decreases with capital intensities in home country. However, if \(A > 1\) and home country has Ricardian Comparative Advantage in more capital intensive industries. Then the sign of \(\frac{\partial \chi_z}{\partial z}\) depends on which comparative advantage is more powerful. If Ricardian Comparative Advantage is so strong that it overturns the Heckscher-Ohlin Advantage, then home country will export more in more capital intensive industries.

Fan et al (2011) incorporate Melitz (2003) into the DFS model (1977) with Ricardian Comparative Advantage and get very similar prediction on export participation. The key
insight from Melitz model is that within sector resource reallocation generates productivity gain. Bernard et al (2007) find that the strength of reallocation is stronger in the industry uses more of the country’s abundant factor. Such heterogeneous reallocation will generate endogenous Ricardian Comparative Advantage. From the last paragraph, we find that such endogenous comparative advantage could even overturn the exogenous Ricardian Comparative Advantage. This is elaborated in next proposition.

Proposition 5

(a) The average of firm specific productivity in each industry is

\[\bar{\varphi}_z = \left(\frac{a}{a + 1 - \sigma} \right)^{1/(\sigma - 1)} \left[\frac{(\sigma - 1)\varphi^a}{\delta(a + 1 - \sigma)f} \right]^{1/(\sigma - 1)} \]

It is a constant within the specialization zone \([0, \bar{z}]\) and \([\bar{z}, 1]\). Within \((\bar{z}, \bar{z})\), it decreases with capital intensity for the labor abundant country and vice versa for the capital abundant country.

(b) The magnitude of Recardian Comparative Advantage could be amplified by the endogenous technology difference generated by reallocation if the Heckscher-Ohlin Comparative Advantage is in line with it, or else it is dampened.

Proof. See Appendix.■

Figure 11: *Export Probability or Export Intensity in Home Country and Foreign Country*
Conclusion (a) of Proposition 5 enables us to decompose industrial average productivity. $A(z)$ is industrial specific producibility while $\tilde{\varphi}_z$ is the average of firm specific productivity. From the expression of $\tilde{\varphi}_z$, it is quite obvious that opening to trade leads to productivity gain since χ_z increases from zero to a positive number. Also, the reallocation effect is stronger when there are more firms exporting in that industry. And the resulting average productivity would also be higher holding industry specific productivity $A(z)$ constant. Then with the result of Proposition 4, conclusion (b) is very straightforward: if $\ln(A) > 0$ while $\frac{\partial \chi_z}{\partial z} < 0$, $\frac{A(z)}{A^*(z)}$ will increase with z and $\frac{\tilde{\varphi}_z}{\chi_z}z$ decreases z, then the overall average industry productivity ratio $\frac{A(z)\tilde{\varphi}_z}{A^*(z)\chi_z}$ could become a decreasing function of z if the reallocation effect is very strong. If this is the case then the Ricardian comparative advantage is dampened. Otherwise, it is amplified.

4.2 Numerical Solution

In this subsection, we find the numerical solution to the model and discuss other equilibrium properties of the model. The algorithm is in Appendix 6 and the parameters chosen are in Table 5. The equilibrium factor prices and cut-off industries are in Table 6. It is easy to see that $\frac{r/u}{r^*/u^*} = 1.165 > 1$. Also $A < 1$, thus we would expect $\frac{\partial \chi_z}{\partial z} < 0$ between $(\tilde{z}, \overline{z})$. From Figure 12, we find this is exactly the case: export probability and intensity first stays constant and then decreases with capital intensity, the opposite is true for foreign country. We also find that industrial output and industrial export follow the same pattern: countries tend to produce and export more in its comparative advantage industries. Firm mass follows similar patterns but it doesn’t stay constant in industries that countries specialize. We should point out that firm mass, industrial output and export also depend on household’s expenditure share $b(z)$: for industries with higher demand, firm mass industrial output and export will also be higher. Since we normalize $b(z)$ to be 1 for all industries, this channel is shut down.
Table 5: Parameters used in simulation

<table>
<thead>
<tr>
<th>Variables</th>
<th>meaning</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>home capital stock</td>
<td>100</td>
</tr>
<tr>
<td>L</td>
<td>home labor stock</td>
<td>300</td>
</tr>
<tr>
<td>K^*</td>
<td>foreign capital stock</td>
<td>300</td>
</tr>
<tr>
<td>L^*</td>
<td>foreign labor stock</td>
<td>100</td>
</tr>
<tr>
<td>f</td>
<td>relative fixed cost of export $\frac{F_L}{F_K}$</td>
<td>6.5</td>
</tr>
<tr>
<td>\tilde{f}</td>
<td>relative fixed cost of entry $\frac{F_L}{F_K}$</td>
<td>20*f</td>
</tr>
<tr>
<td>τ</td>
<td>icebery cost</td>
<td>1.05</td>
</tr>
<tr>
<td>a</td>
<td>shape parameter of Pareto Distribution</td>
<td>3.8</td>
</tr>
<tr>
<td>θ</td>
<td>lower bound of Pareto Distribution</td>
<td>0.2</td>
</tr>
<tr>
<td>δ</td>
<td>exogeneous death probability of firms</td>
<td>0.025</td>
</tr>
<tr>
<td>σ</td>
<td>elasticity of substitution</td>
<td>3.4</td>
</tr>
<tr>
<td>A</td>
<td>strength of comparative advantage</td>
<td>0.5</td>
</tr>
<tr>
<td>λ</td>
<td>strength of absolute advantage</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: most of parameters follow Bernard et al(2007a) and Romalis(2004). A is chosen to be less than 1 so that home country has Ricardian comparative advantage in more labor intensive industries.

Table 6: Equilibrium Factor Prices and Cut-off Industry

<table>
<thead>
<tr>
<th>Variables</th>
<th>meaning</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>domestic interest rate</td>
<td>0.06807</td>
</tr>
<tr>
<td>w</td>
<td>domestic wage rate</td>
<td>0.07045</td>
</tr>
<tr>
<td>r^*</td>
<td>foreign interest rate</td>
<td>0.07989</td>
</tr>
<tr>
<td>w^*</td>
<td>foreign wage rate</td>
<td>0.0964</td>
</tr>
<tr>
<td>\underline{z}</td>
<td>lower cut-off industry</td>
<td>0.2756</td>
</tr>
<tr>
<td>\tilde{z}</td>
<td>higher cut-off industry</td>
<td>0.6547</td>
</tr>
</tbody>
</table>
Figure 12: Baseline Simulation
5 Comparative Statics

In this section, we do comparative statics by changing the value of exogenous variables and study how does the equilibrium response to such changes. We hope these exercises will help us to disentangle different channels and shed light on what we observe in the Chinese data. The three main channels we are interested in are capital deepening, trade liberalization and technology change which are shown as follows.

5.1 Capital Deepening

By keeping all other variables unchanged and increasing home country capital stock K, we increases the capital labor ratio of home country and the effects are shown in Figure 13 and Figure 14. From the left panel of Figure 13, we find that as home country become more capital abundant, τ increases till it stops at 1. Thus home country begin to produce more capital intensive goods. Also ζ decreases till it stops at 0, that is to say foreign country also become to produce labor intensive goods. And $\tau - \zeta$ increases steadily, or say, home and foreign production and export structure become more and more similar as their endowment structures converge. From the middle panel of Figure 13, we find that wage increases in both home and foreign country while capital rental decreases in both countries. And from right panel, we find home country has higher and higher welfare as its capital stock increases but foreign country’s welfare deteriorates.

The intuition behind is that as home country becomes more capital abundant, capital becomes cheaper in home country and its comparative advantages in capital intensive industries increases. Thus we expect it expands its production and export to more capital intensive industries. But since labor supply is fixed and home country has to reallocate labor from labor intensive industries to more capital intensive industries, home export of labor intensive goods decreases and force foreign to pick up these industries in order to support itself. In general, the relative demand for foreign goods decreases thus foreign country incur losses.

Figure 14 illustrates in greater details the effect of capital deepening on production and
trade patterns. As we see, firm mass and industrial output both increases for home country and the magnitude is larger in more capital intensive industries. And foreign production moves more capital intensive industries. As for export, we find home country begin to export more and more in capital intensive industries: export probability, export intensity and export volume all increases. The opposite is true for foreign country.

Then the question is: could capital deepening explain what we observe in the Chinese data. The answer is NO. If we believe that China is becoming more capital abundant comparing with rest of world, then Chinese production becomes more capital intensive. Chinese export should also become more capital intensive which is not consistent with what we observe!

Figure 13: Capital Deepening
Notes: from solid lines to thin dash lines & thick dash lines is the direction that K rises.

Figure 14: Capital Deepening and Equilibrium Outcomes

5.2 Trade Liberalization

In this subsection, we focus on trade liberalization by studying the effect of reduction in trade cost. There are two types of trade costs: fixed costs f_{zx} and variable costs τ which we investigate respectively.

5.2.1 Reduction in Fixed Costs f_{zx}
Before we go on to look at the result, one notion worthy of mention is that the overall fixed cost of export is \(f_{xx}z^2w^{1-z} \), thus a decrease of \(f_{xx} \) only means that the fixed costs of export become relatively less comparing with fixed cost of production, or say \(f \) decreases. From Figure 15, we find that as \(f \) decreases, \(z - \bar{z} \) also decreases: production and export become more and more dissimilar and both countries begin more and more concentrated on their comparative advantage industries. The return to their abundant factor increases and *vice versa* for the scarce factor. Finally, both countries gain from trade liberalization.

From Figure 16, we have the following lessons. Firstly, reduction in fixed trade costs boost up international trade, more in one’s comparative advantage industries: export volume, export probability and intensity all increases. Second, as the fixed costs of trade reduces, productions and exports both move to ones' more comparative advantage industries.

![Figure 15: Reduction of Fixed Trade Costs](image)
5.2.2 Reduction in Variable Trade Costs \(\tau \)

Another form of trade liberalization is reduction in variable costs, or transportation cost \(\tau \). From Figure 17, we find what we learned above from the reduction fixed costs is still true: trade liberalization is welfare improving for both countries and increases return to ones’ abundant factor and drives more specializations. Looking at Figure 18, it is also quite similar to Figure 16. For brevity, we don’t repeat the discussions here.

Notes: from solid lines to thin dash lines & thick dash lines is the direction that \(f_{xx} \) rises.

Figure 16: Trade Liberalization: Reduction in Fixed Cost
Figure 17: Reduction of Variable Trade Costs: τ

Notes: from solid lines to thin dash lines & thick dash lines is the direction that τ rises.

Figure 18: Trade Liberalization: Reduction in variable Cost

36
5.3 Technology Changes

In this subsection, we focus on trade liberalization by studying the effect of technological changes. There are two types of technology changes: absolute advantage λ and comparative advantage A.

5.3.1 Increases in Absolute Advantages

Technology changes in absolute advantages, universal technology changes in all industries, are captured by changing the value of λ. The results are illustrated in Figure 19 and Figure 20. From the left panel of Figure 19, it is obvious that home country begins to produce in more and more industries while foreign is cutting the labor intensive industries as home country becomes relatively more productive in every industries. However, the overlap industries stays stable as λ increases. From the middle panel, the factor return to foreign factors both decreases dramatically while capital return increases and wage stays almost unchanged at home. Then it is natural to understand why home gains while foreign loses from such changes.

Then from Figure 20, we find that export volume, intensity and probability all decreases in labor intensive industries but increases in capital intensive industries as λ increases. Thus export become more capital intensive in home country and so does production.

![Figure 19: Increases in Absolute Advantage: λ](image-url)
Notes: from solid lines to thin dash lines & thick dash lines is the direction that λ rises.

Figure 20: Technology Innovation: Absolute Advantage: λ

5.3.2 Increases in Comparative Advantages

The effect of increases in comparative advantages is captured by changing the value of A. As A increases, home country becomes relatively more productive in capital-intensive industries than foreign country. Firstly, from the left panel of Figure 21, home country will produce more and more capital-intensive goods and foreign country will also pick up labor-intensive industries. Thus their productions overlap more and more. Secondly, the
factor return to both factors in home country increases but wage remains stagnant and capital decreases in foreign. And we find home country’s welfare increases dramatically and foreign country’s welfare decreases modestly. Finally, we depict the structural adjustments of production and export as A increases. It is obvious that home production and export become more and more capital intensive as home country gains technological comparative advantage in capital intensive industries.

Notes: in middle panel when $A=12$, there is a structural break: home country’s technology comparative advantages in capital intensive industries begins to dominate comparative disadvantage in endowment and specializes in capital intensive goods.

Figure 21: Increases in Comparative Advantage: A
Notes: from solid lines to thin dash lines & thick dash lines is the direction that A rises.

Figure 22: Increases in Comparative Advantage: A

6 Bring the Model to Data

6.1 The Strategy

We know that Eaton and Kortum (2002) relate trade share with the technology and trade costs in an elegant manner. Researchers have found it quite handy to infer the deep parameters of the model using the relationship (e.g., Levchenko and Zhang 2013, and Donaldson
forthcoming). Our Proposition 4 also relates the export probability χ_z to the deep parameters of our model. Though it looks less elegant as the result of Eaton and Kortum (2002), indeed it provides a relationship between the observable and parameters of interests.

It turns out that in our model, the export probability χ_z only depends on the following exogenous parameters $\{L^*, K^*, A, \lambda, a, \tau, f, \sigma, b(z)\}$10 which are parameters describing the relative endowments, the relative technology, trade costs and preferences. Our strategy is a Nonlinear Least Square estimation which minimizes the distances between the model generated conditional probability of export χ_z and the observed proportion of exporters for the 100 industries that we define above. But we are not going to estimate all the parameters. Firstly, we get the expenditure share $b(z)$ using output share in our data.11 We set the $a = 2.76$ according to Defever and Riano’s (2012) estimate using the same data. We also set $\sigma = 3$ as an baseline but we’re going see how sensitive our result is. With this in hand, our problem is:

$$\min_{L^*, K^*, A, \lambda, a, f} \sum_{z=1}^{100} (\chi_z - \frac{EM_z}{M_z})^2$$

s.t. Model

where $\frac{EM_z}{M_z}$ is as depicted in Figure 5, the observed proportion of exporters for each industry. We could get an estimation of $\{L^*, K^*, A, \lambda, a, f\}$ by solving this minimization problem taking $b(z)$, a and σ as given. But to fully pin down the model, we still need to

10In the expression for χ_z, it is relative factor prices that appear, not relative factor endowments. But we could prove that the relative factor prices are determined by the relative factor endowments and other parameters. The proof is available upon request.

11In principle, the expenditure on each industry should be output minus net export. But we don’t have information about import in our data. One might suggest merging the custom data with the data we have. But there are two problems. First, the custom data available for researcher is from year 2000 to 2006 while we need year 1999 and 2007. Second, even for year 2000 to 2006, we cannot match the majority of the firms. And from the aggregate data, we know net export is only about 2.8% of Chinese GDP in 1999 and 8.8% in 2007. Expenditure is quite close to output. For more details of how we get the expenditure share $b(z)$, please refer to the appendix.
estimate \(f_z \), the coefficient of the fixed cost of selling in domestic market and either \(\frac{K}{L} \) after we normalize \(f_{cz} = 1 \) and \(L = 1 \) (or equivalently \(\frac{K^*}{L^*} \) if we normalized \(L^* = 1 \)). That is to say, we still need to estimate \(f_z \) and \(\frac{K}{L} \). Our strategy is very much the same as above by solving the following minimization problem:

\[
\min_{\frac{K}{L}, f_z} \sum_{z=1}^{100} (m_z - \frac{M_z}{M})^2 \quad \text{(6.21)}
\]

\[\text{s.t. } \text{Model}\]

where \(m_z \) is the model generated industrial firm number share while \(\frac{M_z}{M} \) is the observed firm number share for industry \(z \). We will estimate the model for year 1999 and 2007 and the results are as follows.

6.2 Results

Our baseline estimation results are shown in Table 7 and the fitted curves are shown in Figure 23.

<table>
<thead>
<tr>
<th>Year</th>
<th>(\frac{L^*}{L})</th>
<th>(\frac{K^*}{K})</th>
<th>(A)</th>
<th>(\lambda)</th>
<th>(\tau)</th>
<th>(f)</th>
<th>(\frac{K}{L})</th>
<th>(f_z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>0.0597</td>
<td>0.2545</td>
<td>1.6928</td>
<td>0.8693</td>
<td>1.5192</td>
<td>0.4619</td>
<td>0.6236</td>
<td>1.0474</td>
</tr>
<tr>
<td>2007</td>
<td>0.1161</td>
<td>0.3491</td>
<td>1.2216</td>
<td>1.2404</td>
<td>1.8057</td>
<td>0.442</td>
<td>1.1365</td>
<td>0.9319</td>
</tr>
</tbody>
</table>

Notes: The parameters are estimated using the Nonlinear Least Squares.
Notes: The parameters are estimated using the Nonlinear Least Squares as indicated by 6.20 and 6.21.

Figure 23: Fitted Curve and Data used in the NLS

With the estimated parameters in Table 7, we could solve the endogenous variables: the factor prices\(\{w, r, w^*, r^*\}\), cut-off industries \(\{\bar{z}, \bar{\tau}\}\), firm mass distribution, output distribution, employment distribution and output distribution. The results are as indicated in Table 8 and the Figures 24 below.

<table>
<thead>
<tr>
<th>Year</th>
<th>(w)</th>
<th>(r)</th>
<th>(w^*)</th>
<th>(r^*)</th>
<th>(\bar{z})</th>
<th>(\bar{\tau})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>0.0255</td>
<td>0.124</td>
<td>0.0269</td>
<td>0.0832</td>
<td>0.5619</td>
<td>1</td>
</tr>
<tr>
<td>2007</td>
<td>0.0203</td>
<td>0.054</td>
<td>0.0183</td>
<td>0.0339</td>
<td>0.3816</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes: The factor prices and cut-off industries are computed using the parameters estimated in Table 7.
6.3 Discussions

In this session, we are going to do several counterfactual experiments to investigate the driving forces behind the structural adjustments of Chinese production and export. Before doing that, two things are worthy of emphasizing.

First, either by looking at Figure 23 or Table 8, we find the implied lower cut-off industry by our model $\bar{\pi}$ is 0.5619 in 1999 but decreases to 0.3816 in 2007 while the higher cut-off industry π remains to be one. That is to say, the measure of overlap industry $[\bar{\pi}, \pi]$ has increased from 0.4381 to 0.6184 and the both the Chinese production and export has become more similar to Rest of World. This is much in line with the findings by Schott (2008), Wang and Wei (2010) that Chinese export has become more and more sophisticated and similar to advanced countries. In principle, our model could serve as a theoretical ground for their finding. But unlike Wang and Wei where they resort to improvement in human capital and government policy like government-sponsored high-tech zones, our explanation relies on changes in trade costs and comparative advantage driven by endowment and technology.

Second, by looking at Table 7, the readers might have the impression that trade cost is rising from 1999 to 2007: τ has increased from 1.5192 to 1.8057. But looking at the fixed costs, $f_{zx}w^{1-z\tau}$, they are all falling actually. This is much more clear by looking at Figure 25 below where we also plot the fixed entry cost $f_{ez}w^{1-z\tau} = w^{1-z\tau}$ given that
is normalized to be 1. As can be seen. The fixed cost of export has decreased a lot, more so for the more capital intensive sectors. In fact, for the most labor intensive sector, the reduction is 32.4% while the most capital intensive sector is 62.8% and the average reduction is 49.1%. Given that \(\tau \) has increased, we concluded that the trade liberalization has been in the form of reduction in fixed cost in China.

Notes: \(f_{xz} = f^* f_z \) while \(f_z \) and \(f \) are from Table 7. \(w \) and \(r \) are from Table 8 while \(z \) has been assigned with value of 0.005 to 0.995 with increment of 0.01.

Figure 25: Fixed Cost of Export and Entry

Finally, we’re ready for the counterfactual experiments. In this experiment, we replace the value of exogenous parameters in year 1999 with that in 2007 in turns and compare the simulated curve with the data of 1999. This experiment will tell us what is the driving force behind the structural adjustment. To be more detailed, in the counterfactual experiment described by Figure 26, we set the endowment parameters \(\{ K^*, L^*, K_n^* \} \) for year 1999 to be that of year 2007 while keeping the other parameters unchanged. Following the similar idea, we change \(\{ \tau, f \} \) for Figure 27 and \(\{ \lambda, A \} \) for Figure 28.\(^{12}\)

\(^{12}\)We also do the counterfactual on \(f_z \) but there is basically no observable changes: the factual and counterfactual coincide with each other on the graph.
As can be seen in the figures, changes in endowment are driving the export probability to increase in all sectors, especially in labor intensive sectors while changes in technology and trade costs are driving down the export probability. The net effect is as what we found in the data: the export probability increases for the labor intensive sectors and decreases for the capital intensive sectors. For firm mass distribution, the changes in endowment and trade costs are driving the firm mass to more capital intensive sectors while changes in technology tilts the firm mass slightly to labor intensive sectors. In net, the firm mass distribution shifts to more capital intensive sectors.

Note: The dash lines are the counterfactuals. In this figure, we replace \(\frac{K^*}{K} \), \(\frac{L^*}{L} \), and \(\frac{K}{L} \) for year 1999 with that of year 2007 and keep other parameters unchanged in the counterfactual.

Figure 26: Counterfactual on Endowment
Note: The dash lines are the counterfactuals. In this figure, we replace \{f, \tau\} for year 1999 with that of year 2007 and keep other parameters unchanged in the counterfactual.

Figure 27: Counterfactual on Trade Costs

Note: The dash lines are the counterfactuals. In this figure, we replace \{A, \lambda\} for year 1999 with that of year 2007 and keep other parameters unchanged in the counterfactual.

Figure 28: Counterfactual on Technology

47
7 Concluding Remarks

In this paper, we firstly document seemingly puzzling patterns of structural adjustments in production and export based on a comprehensive Chinese firm level data: the overall manufacturing production became more capital intensive while export became more labor intensive between 1999-2007. It counter our understanding from Rybczynski Theorem of HO theory. To explain these findings, we embed Melitz-type heterogeneous firm into the Ricardian and Heckscher-Ohlin trade theory with continuous industries. The theory predicts that export probability and export intensity decrease with comparative advantages. And they remain constant for inter-industry trade industries where countries specialize. Such predictions are supported by data.

By doing comparative statics, we find trade liberalization, capital deepening and technology change, none of them alone could explain the data. Then we structurally estimate the model by using the relationship between export participation, firm mass and the deep parameters. Then by using the estimated parameters, we do counterfactual simulation which suggests that endowment change seems to be the main driving force behind.

Our result is still preliminary. We will do bootstrap to find out the significance of our estimated parameters. We will see how robust our conclusion is to changes in elasticity of substitution σ and the Pareto distribution parameter a.

References

8 Appendix

8.1 Proof of Proposition 1

The proof goes in this way: suppose that factor prices \(\{w, w^*, r, r^*\} \) are known, and we find the factor demands as functions of them. Then market clearing condition will pin down the unique equilibrium. Firstly, we have the national revenue for home country and foreign country: \(R = wL + rK \) and \(R^* = w^*L^* + r^*K^* \). Potentially, there could be industries that either country specializes.\(^{13}\) The factor demands in home country for these industries are \(l(z) = (1 - z)b(z)(R + R^*)/w \), \(k(z) = zb(z)(R + R^*)/r \). Factor demands in foreign country have symmetric expressions. For industries that both country produce, the industry revenue

\(^{13}\)We are going to show how to determine the specialization pattern in proposition 2. And greater detailed could be found in the algorithm of numerical solution.
function is given by equation (3.17), thus we need to know the firm mass M_z, M_z^*, the pricing index $P(z)$ and $P(z)^*$ and industry average productivity $\hat{\varphi}_z$ and $\hat{\varphi}_z^*$ (average price $p(\hat{\varphi}_z)$ and $p(\hat{\varphi}_z^*)$) in order to find its factor demand. Firstly, from equation (3.17), we find that:

$$\frac{r(\hat{\varphi}_z)}{r(\hat{\varphi}_z)} = \frac{\hat{\varphi}_z^{1-\sigma} \left(\frac{P(z)}{P(z)^*}\right)^{a+1-\sigma} + \frac{P^z - \sigma - \sigma}{\tau} \chi_z}{\frac{P(z)}{P(z)^*} + \chi_z} \cdot \left(\frac{P(z)}{P(z)^*}\right)^{a-1}$$

(8.1)

Here $r(\hat{\varphi}_z) = \frac{R}{M_z}$ is the average firm revenue and $\tilde{p}_z \equiv \frac{p_{ed}(\hat{\varphi}_z)}{p_{ed}(\hat{\varphi}_z)^*} = \frac{\hat{\varphi}_z^{1-\sigma}}{\varepsilon(z)p_{zw}^w} \left(\frac{r/w}{r/w^*}\right)^z$ is the relative average domestic price between the two countries. Using the zero profit condition (3.9), (3.10) and $\frac{r(\hat{\varphi}_z)}{r(\hat{\varphi}_z)} = \left(\frac{\hat{\varphi}_z}{\hat{\varphi}_z^*}\right)^{\sigma-1}$, it is obvious that $r(\hat{\varphi}_z) = (f_z(\hat{\varphi}_z)^{-\alpha} + \chi_z \hat{\varphi}_z (\hat{\varphi}_z)^{-\alpha}) \sigma w^{1-\eta}$. Combing with the free entry condition, we could find that the average productivity between home and foreign country is $\hat{\varphi}_z^* = (1 + \chi_z) \frac{f_z}{f_z} = \frac{1 + \chi_z}{f_z} f_z$ while $f_z \equiv \frac{f_z}{f_z}$. Using the Pareto distribution assumption, we can easily solve that $\hat{\varphi}_z = \hat{\varphi}_z^* = \frac{\hat{\varphi}_z}{\hat{\varphi}_z^*} = \frac{1 - G(\hat{\varphi}_z)}{1 - G(\hat{\varphi}_z)^*} = \Lambda_z^{-a}$ while Λ_z is the productivity cut-off ratio given by (3.11). Then we have:

$$\frac{r(\hat{\varphi}_z)}{r(\hat{\varphi}_z)} = \varepsilon \hat{p}_z \left(1 + \frac{f_z \chi_z}{1 + f_z \chi_z} \right)^{\alpha+1}$$

(8.2)

Using the definition of \hat{p}_z and combining (8.1) and (8.2), we have:

$$\chi_z = \frac{\hat{\tau} - a f - \varepsilon^a g(z)}{\varepsilon^a f g(z) - \hat{\tau}}$$

(8.3)

Here $g(z) \equiv \left(\frac{r/w}{r/w^*}\right)^{\alpha^2} \hat{\tau}$ while $\hat{\tau} \equiv \frac{1}{\tau f \hat{\tau}}$. From (8.3), we see that χ_z is a function of the factor price. From equation (3.11) we have $\Lambda_z = \chi_z^{-1/a} = \frac{\tau P(z)}{P(z)^*} (\frac{R}{P(z)^*})^{1/(\sigma - 1)}$, then $\frac{P(z)}{P(z)^*} = \chi_z^{-1/a} \left(\frac{R}{F(z)^*}\right)^{1/(\sigma - 1)}$. So we can find that for those industries that both country produce:

14 This is a typical property of Melitz (2003) type model.

15 Here it can be proved that $\frac{\partial \chi_z}{\partial \tau} < 0$ which is one of the conclusions in proposition 3. However, here we rely on the Pareto distribution while proposition 3 doesn’t need that.
\[R_z = b(z) \left(\frac{R}{1 - \tau^{-a} \varepsilon^a f g(z)} - \frac{f R^*}{\tau^a \varepsilon^a g(z) - f} \right) \]

(8.4)

\[R_z^* = b(z) \varepsilon^a g(z) \left[\frac{R^*}{\varepsilon^a g(z) - f - \tau^{-a} \varepsilon^a f g(z)} - \frac{f R}{\varepsilon^a g(z) - f - \tau^{-a} \varepsilon^a f g(z)} \right] \]

(8.5)

So both could be written as a function of the factor price. Again using \(l(z) = (1 - z)b(z)R_z/w \) and \(k(z) = zb(z)R_z/r \). Then the factor demand for industries that both country produce as:

\[
\int_{l(s)} (1 - z) \frac{b(z)(R + R^*)}{w} \, dz + \int_{l(b)} (1 - z) \frac{R_z}{w} = L
\]

\[
\int_{l(s)} z \frac{b(z)(R + R^*)}{r} \, dz + \int_{l(b)} z \frac{R_z}{r} = K
\]

Another 2 symmetric equations could be written for the case of foreign country. \(I(s) \) is set of the industries that home country specializes and while \(I(b) \) is the set of industries that both countries produce. It is determined where either domestic or foreign firm mass is zero.

From the definition of price index (3.18), we have

\[
\frac{M_z}{M_z^*} = P^{\sigma - 1} \frac{(P(z))^1 - \chi_z \frac{a + 1 - a}{\alpha} \tau^{-2(a+1-\sigma)} \chi^{1-\sigma} (\frac{P(z)}{P(z)^*})^{1-\sigma}}{1 - \chi_z \frac{a + 1 - a}{\alpha} \tau^{-1-\sigma} (\frac{P(z)}{P(z)^*})^{1-\sigma}}
\]

Thus it is also determined by factor prices.\(^{16}\) So there are 4 equations for 4 unknowns, given reasonable parameters the equilibrium factor prices could be uniquely pinned down.\(\blacksquare\)

8.2 Proof of Proposition 2

In the proof of Proposition 1, we mention that the relative firm mass at home and abroad is:

\[
\frac{M_z}{M_z^*} = P^{\sigma - 1} \frac{(P(z))^1 - \chi_z \frac{a + 1 - a}{\alpha} \tau^{-2(a+1-\sigma)} \chi^{1-\sigma} (\frac{P(z)}{P(z)^*})^{1-\sigma}}{1 - \chi_z \frac{a + 1 - a}{\alpha} \tau^{-1-\sigma} (\frac{P(z)}{P(z)^*})^{1-\sigma}}
\]

\(^{16}\)We provide more details in next proof.
Since \(\frac{P(z)}{P(z)} = \frac{X^{1/\sigma}}{F^{1/(\sigma-1)}} \) and \(\tilde{p}_z = \frac{\tilde{p}_z^w}{\tilde{p}_z^w} (\frac{r/w}{r/w^*})^2 \), we find it could be further simplified as:

\[
\frac{M_z}{M^*} = \varepsilon^{-\sigma} \left(1 + \frac{f \chi_z^2}{1 + f \chi_z} \right)^{\frac{\varepsilon-1}{\varepsilon}} \left[w \left(\frac{r/w}{r/w^*} \right)^{\varepsilon} \right]^{\sigma-1} \left[\frac{f F - F_z - \xi_z \chi_z \chi^{\frac{1}{\varepsilon}}}{1 - \chi_z F_z} \right]^{\frac{\varepsilon}{\varepsilon-1}}
\]

Then \(\exists \chi_z = \frac{F^*}{F^*} (\frac{f}{f})^2 \) such that \(\frac{M_z}{M^*} = 0 \). Since \(M^*_z > 0 (M^*_z \neq 0) \), it must be that \(M_z = 0 \). And as \(\chi_z \) decreases such that \(\chi_z < \frac{F^*}{F^*} (\frac{f}{f})^2 \), it must be that \(\frac{M_z}{M^*} < 0 \). If \(\chi_z \) increases such that \(\chi_z \) approaches \(\frac{F^*}{F^*} \), we have \(\frac{M_z}{M^*} \to +\infty \), or say \(\frac{M^*_z}{M^*_z} \to 0 \), so again we have \(M^*_z = 0 \). If \(\chi_z \) further increases such that \(\chi_z > \frac{F^*}{F^*} \), we again have \(\frac{M_z}{M^*} < 0 \). Thus to maintain positive firm mass for both home and foreign in certain industry \(z \), we must have:

\[
\frac{F^*}{F^*} (\frac{f}{F^*})^2 < \chi_z < \frac{F^*}{F^*}
\]

where \(\frac{f}{F^*} = \frac{f}{F^*} < \frac{f}{F^*} < 1 \), \((a > \sigma - 1 > 0) \), if \(\sigma > 1 \) and \(f > 1 \). And if \(\chi_z \) falls out of this range. One of the countries’ firm mass is zero (it cannot be negative which is meaningless) and the other is positive. This is where specialization happens! For industries that both country produces, we have

\[
\chi_z = \frac{\tau_a f - \varepsilon g(z)}{\varepsilon f g(z)} \quad (8.6)
\]

which is a continuous and monotonic function between \([\bar{z}, \bar{z}]\). Then we have

\[
\chi_z = \frac{F^*}{F^*} \quad \text{and} \quad \chi_{\bar{z}} = \frac{F^*}{F^*} (\frac{f}{F^*})^2
\]

and \((\bar{z}, \bar{z})\) are given by:

\[
\bar{z} = \frac{\ln(\chi_z^\frac{1}{1+\chi_z}) + \frac{a\alpha}{1-\alpha} \ln(\frac{\omega}{\omega^*}) - a \ln(\lambda)}{\frac{a\alpha}{1-\alpha} \ln(\frac{\omega}{\omega^*}) + a \ln(A)}
\]

\[
\bar{z} = \frac{\ln(\chi_z^\frac{1}{1+\chi_z}) + \frac{a\alpha}{1-\alpha} \ln(\frac{\omega}{\omega^*}) - a \ln(\lambda)}{\frac{a\alpha}{1-\alpha} \ln(\frac{\omega}{\omega^*}) + a \ln(A)}
\]

\[17\]This is true given our assumption of home country is labor abundant and has Ricardian comparative advantage in more labor intensive industries.

54
And if $\tau = f = 1$, we have $\chi_{\mathbb{z}} = \chi_{\mathbb{z}^*} = \frac{R^*}{r}$. So $\mathbb{z} = \mathbb{z}^*$ and there are intra-industry trade.

8.3 Proof of Proposition 3

Let’s focus on the labor abundant home country: for any 2 industries z and z', suppose $z < z'$. From the definition of Λ_{z} (3.11) and using the assumption that trade costs and fixed costs are the same all industries, we have:

$$\frac{\Lambda_z}{\Lambda_{z'}} = \frac{P(z)/P(z')}{P(z^*)/P(z')^*}.$$

Thus if $\frac{P(z)}{P(z')} < \frac{P(z^*)}{P(z')^*}$, or say labor intensive products are relatively cheaper in home country, then we have $\Lambda_z < \Lambda_{z'}$. This is exactly what we are going to do. If $\frac{P(z)}{P(z')} < \frac{P(z^*)}{P(z')^*}$ under autarky and $\frac{P(z)}{P(z')} = \frac{P(z^*)}{P(z')^*}$ under free trade, then the costly trade case will fall between and establishes our proof. When there is free trade (no variable costs or fixed costs of trade), all firms will export, the price of each variety and number of varieties will be the same for both countries. Thus the pricing index $P(z) = P(z)^*$ for all industries and $\frac{P(z)}{P(z')} = \frac{P(z^*)}{P(z')^*}$. On the other extreme of close economy, no firms export and from (3.18) we have $P(z) = M_z \cdot \frac{1}{\varphi_z} \cdot P(z')$. Firm mass for each industry is $M_z = \frac{b(z)R}{r(\varphi_z)} = \frac{b(z)R}{r(\varphi_z)} \cdot \frac{P(z)}{P(z')}$. So $P(z) = (\frac{w}{\rho})^{z'-z} / (\frac{w}{\rho})^{z} \cdot \frac{P(z)}{P(z')}$. Using (3.16) we have homogeneous cut-offs for all industries under autarky: $\varphi_{z'} = \varphi_z$. Then it can be verified that

$$\frac{P(z)/P(z')}{P(z^*)/P(z')^*} = \left(\frac{w/r}{w*/r^*} \right)^{z'-z} A^{z'-z}$$

Since $z' > z$ and $A < 1$, then $\frac{w}{r} < \frac{w^*}{r^*} \iff \frac{P(z)}{P(z')} < \frac{P(z^*)}{P(z')^*}$. So our next task is to prove $\frac{w}{r} < \frac{w^*}{r^*}$ under autarky. Because of the factor market clearing condition and the Cobb-Douglas production function for production, entry and payments of fixed costs, we find that:
Thus \(\frac{K}{L} < \frac{K^*}{L^*} \iff \frac{w}{r} < \frac{w^*}{r^*} \) and we establish that \(\Lambda_z < \Lambda_{z'} \), or say \(\Lambda_z \) increases with \(z \) in home country. For industries that home country specializes: \(\Lambda_z = \chi_z^{-1/a} = \left(\frac{IR}{R} \right)^{1/a} \) and doesn’t vary with \(z \). This is also true for foreign country.

As for intra-industry trade zone, by referring back to (3.16) which determines the two cut-offs, we see that the first term of left hand side is a decreasing function of \(_\partial \lambda \). Since \(\Lambda_z \) increases with \(z \), it can be easily shown that \(_\partial \lambda > 0 \) or \(_\partial \lambda = 0 \) cannot maintain the equation, so it must be the case that \(_\partial \lambda < 0 \). Then the first term will increase as \(z \) increases. To maintain the equation the second term must decrease with \(z \). So \(\frac{\partial z^*}{\partial z} = \Lambda_{z'\lambda \lambda} \) should be an increasing function of \(z \). Applying the same logic, we can get the opposite results for foreign country: \(\varphi_{zz} > 0 \) and \(\varphi_{zz}^* < 0 \). And this result rely on any assumption of the distribution here.

8.4 Proof of Proposition 4

From the proof of proposition 4, we know that \(\Lambda_z < \Lambda_{z'} \) if \(z < z' \) within the intra-industry trade region. Within the specialization zone, it can be easily found that \(\Lambda_z = \left(\frac{IR}{R} \right)^{1/a} \) which doesn’t do with \(z \). Since exporting probability \(\chi_z = \frac{1 - G(\varphi_z)}{1 - G(\varphi_z^*)} = \Lambda_z^{-a} \) (a > 1), conclusion (a) is obvious. For industries that both country produce, we know that \(\chi_z = \frac{\varphi - a + 2\alpha}{\varphi g(z)} \) from the proof of proposition 1. Using chain rule, we have

\[
\frac{\partial \chi_z}{\partial z} = \frac{(1 - \gamma)^{-2\alpha} g(z)}{(\Lambda_z^{-a})^2} \left(\ln(A) - \frac{\sigma}{\sigma - 1} \ln\left(\frac{r}{w} \right) \right)
\]

For average export intensity \(\gamma_z \equiv \frac{f_{\lambda_x} \chi_z}{f_{\lambda_x} + f_{x'\lambda_x}} = \frac{\chi_z f_{x'\lambda_x} (\varphi_z^{x'\lambda_x})^{\sigma - 1} \gamma_z^{1/z}}{(f_{\lambda_x} (\varphi_z^{x'\lambda_x})^{\sigma - 1} + \chi_z f_{x'\lambda_x} (\varphi_z^{x'\lambda_x})^{\sigma - 1}) \gamma_z^{1/z}} = \frac{f_{x'\lambda_x}}{f_{\lambda_x} + f_{x'\lambda_x}} = \frac{f_{x'\lambda_x}}{f_{\lambda_x} + f_{x'\lambda_x}} > 0 \). So \(\gamma_z \) is a monotonic increasing function of \(\chi_z \).
and should follow the same pattern.

8.5 Proof of Proposition 5

Again from equation (3.16), we could calculate that:

\[\tilde{\varphi}_z = \left(\frac{a}{a + 1 - \sigma} \right)^{\frac{1}{\sigma - 1}} \varphi_z = \left(\frac{a}{a + 1 - \sigma} \right)^{\frac{1}{\sigma - 1}} \left[\frac{(\sigma - 1)\theta^a}{(a + 1 - \sigma)\delta f} (1 + f\chi_z) \right]^{\frac{1}{\sigma - 1}} \]

where \(\tilde{f} = \frac{f}{f_z} \). Again it is monotonic function of \(\chi_z \) and should follow the same pattern of it. Since we assume \(A(z) \) is the same for all industries, conclusion (a) is established. For conclusion (b), the average productivity for exporters and non-exporters are given by:

\[
\begin{align*}
\hat{\varphi}_{zz} &= \left[\frac{1}{1 - G(\hat{\varphi}_{zx})} \int_{\hat{\varphi}_{zx}}^{\infty} \varphi^{\sigma-1} g(\varphi) d\varphi \right]^{\frac{1}{\sigma - 1}} = \left(\frac{a}{a + 1 - \sigma} \right)^{\frac{1}{\sigma - 1}} \varphi_{zx} \\
\hat{\varphi}_{znx} &= \left[\frac{1}{G(\hat{\varphi}_{zx}) - G(\hat{\varphi}_{z})} \int_{\hat{\varphi}_{z}}^{\hat{\varphi}_{zx}} \varphi^{\sigma-1} g(\varphi) d\varphi \right]^{\frac{1}{\sigma - 1}} = \left(\frac{a}{a + 1 - \sigma} \right)^{\frac{1}{\sigma - 1}} (\frac{1 - \Lambda_z^{\sigma-1-a}}{1 - \Lambda_z^{-a}}) \frac{1}{\sigma - 1} \varphi_z
\end{align*}
\]

Thus the ratio of average productivity for exporters and non-exporters are:

\[
\frac{\hat{\varphi}_{zx}}{\hat{\varphi}_{znx}} = \Lambda_z \left(\frac{1 - \Lambda_z^{\sigma-1-a}}{1 - \Lambda_z^{-a}} \right) \frac{1}{\sigma - 1}
= \chi_z \left(\frac{1 - \chi_z}{1 - \chi_z^\frac{1}{1-a}} \right) \frac{1}{\sigma - 1}
\]

It is a decreasing function of \(\chi_z \) and follows the opposite pattern of it within the intra-industry zone and remain constant within the specialization zone.

8.6 Numerical Solution

Given the exogenous parameters, the algorithm below will enable us to solve the equilibrium variables. The idea is very much the proof of Proposition 1: suppose that the wage factor

57
\{w, w^*, r, r^*\} is known, we could find the factor demand as a function of it. Then market clearing condition will pin down the unique solution. We set \(b(z)=1\) for all \(z\) so as to satisfy \(\int_0^1 b(z) = 1\) and in principle we specify other kind of utility functions. But this is the simplest one to use.

The aggregate revenue for home and foreign are:

\[
R = wL + rK \\
R^* = w^*L^* + r^*K^*
\]

Factor intensity cut offs are:

\[
\bar{z} = \frac{\ln(\frac{\chi_{z}}{1+\chi_{z}}) - \frac{\alpha}{1-\sigma} \ln(\frac{w}{w^*}) - \alpha \ln(\lambda)}{\frac{\alpha}{1-\sigma} \ln(\frac{r}{r^*/w^*}) + \alpha \ln(A)} \\
\bar{z} = \frac{\ln(\frac{\chi_{z}}{1+\chi_{z}}) - \frac{\alpha}{1-\sigma} \ln(\frac{w}{w^*}) - \alpha \ln(\lambda)}{\frac{\alpha}{1-\sigma} \ln(\frac{r}{r^*/w^*}) + \alpha \ln(A)}
\]

where \(\chi_{\bar{z}} = \frac{R}{\bar{R}}\) and \(\chi_{\bar{z}} = \frac{R^*}{\bar{R}^*}(\frac{L^*}{L})^2\) are what we find in the proof of proposition 2. We also know that the equation solving home exporting probability within the intra-industry trade region is:

\[
\chi_{\bar{z}} = \frac{\bar{z} - g(z)}{f g(z) - \bar{z}^\alpha}
\]

where \(g(z) \equiv (\frac{w}{w^*}(\frac{r}{r^*/w^*})^\frac{\alpha}{1-\sigma})^{\frac{\alpha}{1-\sigma}}\).

Then the factor demand within the specialization region are:
Using (8.4) we find that the factor demand within the intra-industry trade region are:

\[
L_s = \int_0^\infty l(z)dz = \left(\frac{z - 1/2}{w} + \frac{R + R^*}{w}\right) \frac{dz}{w}
\]

\[
K_s = \int_0^\infty k(z)dz = \left(\frac{1}{2}\frac{z}{R} + \frac{R + R^*}{r}\right) \frac{dz}{r}
\]

\[
L_s^* = \int_0^1 l^*(z)dz = \left(\frac{1}{2} - \frac{z^2}{w^*} + \frac{R + R^*}{w^*}\right) \frac{dz}{w^*}
\]

\[
K_s^* = \int_0^1 k^*(z)dz = \left(\frac{1}{2} - \frac{z^2}{w^*} + \frac{R + R^*}{2w^*}\right) \frac{dz}{w^*}
\]

In the equations above we use the goods market clearing condition and the definition of \(P(z)\) and \(P^*(z)\) to find out \(R_s^*\) and \(R_s\). The factor Market Clearing condition is:

\[
L_{int} = \int_0^\infty \frac{(1 - z)R_s}{w} dz = \int_0^\infty \frac{(1 - z)}{w} \left[\frac{R}{1 - \tau - \alpha \varepsilon g(z)} - \frac{fR^*}{\tau^* \varepsilon \alpha g(z)}\right] \frac{dz}{\varepsilon}
\]

\[
K_{int} = \int_0^\infty \frac{zR_s}{r} dz = \int_0^\infty \frac{z}{\varepsilon} \left[\frac{R}{1 - \tau - \alpha \varepsilon g(z)} - \frac{fR^*}{\tau^* \varepsilon \alpha g(z)}\right] \frac{dz}{\varepsilon}
\]

\[
L_{int}^* = \int_0^1 \frac{(1 - z)R_s^*}{w^*} dz = \int_0^1 \frac{(1 - z)}{w^*} \left[\frac{R^*}{\varepsilon \alpha g(z)} - \frac{fR}{\tau^* \varepsilon \alpha g(z)}\right] \frac{dz}{\varepsilon}
\]

\[
K_{int}^* = \int_0^1 \frac{zR_s^*}{r^*} dz = \int_0^1 \frac{z}{\varepsilon} \left[\frac{R^*}{\varepsilon \alpha g(z)} - \frac{fR}{\tau^* \varepsilon \alpha g(z)}\right] \frac{dz}{\varepsilon}
\]
\[L_s + L_{int} = L \] \hspace{1cm} (8.8)
\[K_s + K_{int} = K \] \hspace{1cm} (8.9)
\[L_s^* + L_{int}^* = L^* \] \hspace{1cm} (8.10)
\[K_s^* + K_{int}^* = K^* \] \hspace{1cm} (8.11)

From the market clearing condition we then pin down the equilibrium factor prices and other variables are simply function of factor prices.

8.7 Constructing the Expenditure Share \(b(z) \)

First, we compute the average output share for year 1999 and 2007 for each industry using sales as measurement. Then we use a 4th-order polynomials to approximate \(b(z) \), i.e., we assume that:

\[b(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + a_4 z^4 + o(z^5) \]

Since \(\int_0^1 b(z)dz = 1 \), there is a constraint on the polynomial coefficients which is:

\[a_0 = 1 - \frac{a_1}{2} - \frac{a_2}{3} - \frac{a_3}{4} - \frac{a_4}{5} \]

Then for each pair of \(\{a_1, a_2, a_3, a_4\} \), we could generate the corresponding CDF of \(b(z) \) and then the corresponding histogram with bandwidth of 0.01 from 0 to 1. By minimizing the distance between the hypothetical histogram with what we observe from the data\(^{18}\), we could get an estimation of \(\{a_1, a_2, a_3, a_4\} \). In the figure below, we plot the data we use and the result we get for the 4th order polynomial.

\(^{18}\)With the constraint that \(b(z) \) is always non-negative.
Fitted Expenditure Sharing in 4th order Polynomial

- Data average of 1999 & 2007
- 4th order Polynomial