How fully do people exploit their bargaining position?
The effects of bargaining institution and the 50–50 norm

Nejat Anbarci
School of Accounting, Economics and Finance
Deakin University
70 Elgar Road
Burwood VIC 3125, Australia
nejat.anbarci@deakin.edu.au

Nick Feltovich*
Department of Economics
Monash University
Clayton VIC 3800, Australia
nicholas.feltovich@monash.edu

April 11, 2014

Abstract

A recurring puzzle in bargaining experiments is that individuals under–respond to changes in their bargaining position, compared to the predictions of standard bargaining theories. This result has been observed in a variety of settings, but there has been little systematic study of the factors associated with higher or lower responsiveness. We conduct a complete–information bargaining experiment using two institutions – the Nash demand game (NDG) and a related unstructured bargaining game (UBG) – and with bargaining power varied via the disagreement outcome. Importantly, in about one–fourth of bargaining pairs, one player’s disagreement payoff is more than half the cake size; in these cases, 50–50 splits are not individually rational.

We find that subjects are least responsive to changes in bargaining position in the NDG with both disagreement payments below half the cake size. Responsiveness is higher in the UBG, and in the NDG when one disagreement payment is more than half the cake, but in both cases it is still less than predicted. It is only in the UBG with a disagreement payment more than half the cake that responsiveness reaches the predicted level. Our results imply that the extent to which actual bargaining corresponds to theoretical predictions will depend on (1) the institutions within which bargaining takes place, and (2) the distribution of bargaining power, in particular, whether the 50–50 norm yields a plausible focal point.

*Corresponding author. Financial support from Deakin University is gratefully acknowledged. Some of this research took place while Feltovich was at University of Aberdeen. We thank John Boyd III, Emin Gahramanov, Lata Gangadharan, Philip Grossman, Glenn Harrison, Håkan Holm, Sobei H. Oda, Randy Silvers, Robert Slonim, and participants at several conferences and seminars for helpful suggestions, with special thanks to Lata Gangadharan for providing the z–Tree program that we modified to create our real–effort task.

Journal of Economic Literature classifications: C78, C72, D81.
Keywords: Nash demand game, unstructured bargaining, real effort, equal split, experiment.
1 Background

Bargaining is pervasive. Even in Western societies, where haggling over small purchases has been de-emphasised, the selling prices of large goods (e.g., new and used cars, houses) are often determined at by bargaining. Employees’ compensation packages are also frequently the result of bargaining at either the group level (for unionised jobs) or the individual level (in many professional labour markets). In order to understand how markets work – especially whether, and at what price(s), trade takes place – we must understand bargaining.¹

A fundamental principle of bargaining is that outcomes depend on bargaining power. Even before bargaining settings were thought of as leading to precise predictions, it was generally understood that the division of surplus would depend on the two parties’ relative bargaining positions (Edgeworth, 1881). Later axiomatic bargaining solution concepts (e.g., Nash, 1950; Kalai and Smorodinsky, 1975) formalised this dependence and quantified it by specifying a precise outcome – the bargaining solution – based on the most important features of the environment. Even non-cooperative game-theoretic approaches to bargaining, which may yield a multiplicity of theoretical predictions, can narrow these down to a unique prediction with only minor additional assumptions. With a unique prediction comes a well-defined comparative-static relationship between features of the bargaining environment and that prediction. In particular, specified changes to the bargaining position of one player relative to the other will have particular implications for the bargaining outcome.

Whether these theoretical implications are seen in real bargaining is an empirical question. Previous experimental work suggests that bargainers are less responsive to changes in bargaining position than predicted, and in particular, the social norm of 50–50 splits of the “cake” (the amount being bargained over) exerts a powerful pull on outcomes. (See Section 3 for a review of the relevant literature.) While the extent of this under-responsiveness varies widely across studies, there has been surprisingly little systematic examination of the factors associated with it: in what settings do people tend to exploit their bargaining power to a greater or lesser degree, how much impact do individual aspects of the bargaining setting have, and are there any settings where theoretically predicted levels of exploitation should be expected?

The goal of the current paper is to improve understanding of how bargaining outcomes are shaped by players’ bargaining positions. We use a laboratory experiment, allowing us to maintain, in two important ways, a high degree of control over the environment relative to observational studies from the field. First, we are able to standardise the rules under which bargaining takes place, in contrast to field studies that must aggregate bargaining outcomes from heterogeneous and perhaps imperfectly understood bargaining institutions. Second, we give the subjects complete information about the cake size and disagreement payoffs (the amounts they get if bargaining is unsuccessful, more of which below), so that we, and the subjects, know the theoretical prediction for any particular bargaining pair.

We implement differences in bargaining position via the disagreement outcome, making it possible for an individual’s bargaining power to vary nearly continuously over a wide range of possible levels, in contrast to many earlier studies that varied bargaining power in lumpier ways (e.g., first– versus second–mover, number of stages of bargaining, endogenous versus random breakdown). Bargaining theory displays a remarkable amount of consensus regarding the predicted effect of the disagreement outcome. All of the most common axiomatic bargaining solutions – as well as those non–cooperative techniques that yield unique solutions – have exactly the same implication for this setting: a unit increase in one’s own disagreement payoff implies a one–half unit increase in one’s own payoff as a

¹As an example of the importance of bargaining in determining market outcomes, many researchers have suggested that male–female wage gaps are at least partly due to sex differences in willingness or ability to bargain; see, e.g., Stuhlmacher and Walters (1999), Small et al. (2007) and Fortin (2008).
result of bargaining, while a unit increase in one’s opponent’s disagreement payoff implies a corresponding one–half unit decrease.2 We will call these the own–disagreement–payoff effect and opponent–disagreement–payoff effect, and their sum – a measure of overall responsiveness to bargaining position – the combined [disagreement–payoff] effect.

Subjects in our experiment bargain under one of two bargaining institutions, both widespread in bargaining experiments and in theoretical modelling of the bargaining process. In the Nash (1953) demand game (NDG), bargaining consists of a single pair of simultaneously–made demands. If these total the cake size or less, then each bargainer receives the amount demanded; otherwise they receive their disagreement payoffs. In the unstructured bargaining game (UBG), bargainers are given a known time interval, during which either one can make proposals for splitting the cake; the first accepted proposal is implemented. If no proposal is accepted before the time runs out, the bargainers receive their disagreement payoffs.

While the distribution of bargaining power is typically asymmetric due to the bargainers having different disagreement payoffs, the two institutions themselves are symmetric in the sense that neither bargainer is given a structural advantage (in contrast, for example, to the ultimatum game or Rubinstein (1982) bargaining, both of which entail a first–mover advantage). However, the two institutions have markedly different levels of strategic uncertainty, resulting in a much more severe coordination problem in the NDG than the UBG; previous research (Feltovich and Swierzbinski, 2011) has found this not only leads to fewer agreements in the NDG, but for agreements to gravitate toward 50–50 splits of the cake. Because of this, we hypothesise that subjects will be less responsive to changes in their bargaining power in that game than in the UBG. That is, disagreement–payoff effects should be higher in the UBG than in the NDG.

Our variation of the disagreement outcome gives rise to another set of hypotheses involving the 50–50 split. About one–fourth of the time, one of the bargainers has a disagreement payoff more than half of the cake size; we refer to these cases as involving dominant bargaining power. When an individual has dominant bargaining power, agreeing to a 50–50 split involves an actual monetary sacrifice, which should make it much less attractive compared to situations where neither bargainer has dominant bargaining power (in which case a 50–50 split may still involve accepting a smaller gain relative to the disagreement payoff than one’s co–bargainer, but not an outright money loss). With the focal power of the 50–50 split gone, we expect that subjects will be drawn toward alternative focal points like equal sharing of the surplus (the remainder of the cake after both disagreement payoffs are subtracted) that entail disagreement–payoff responsiveness equal to the theoretically predicted level. That is, disagreement–payoff effects are expected to be higher with dominant bargaining power than without it.

A notable feature of our experimental procedures is the use of earned bargaining power. Specifically, subjects’ disagreement payoffs, rather than being assigned by the experimenter, are based on performance on a simple but repetitive “real effort” task (described in Section 4.1). We conjecture that this has two advantages. First, it is probably more realistic: a disagreement payoff in real bargaining – being the value of the best alternative opportunity to agreement with the current co–bargainer – is often the result of past decisions, effort, and intrinsic abilities, with only a small part played by luck. Second, making subjects earn their bargaining power ought to nudge them toward more fully exploiting it, reducing the attraction of the 50–50 split and increasing responsiveness to disagreement payoffs. Our experiment is novel, as there have been very few bargaining studies that vary bargaining power nearly continuously through a large range of levels, few in which bargaining power depends on skill and effort, few where individually rational 50–50 splits can be ruled out, and to our knowledge, none with all of these features.

2Thomson (1987) analyses how various axiomatic bargaining solutions vary with the disagreement outcome for more general bargaining problems with two or more agents.
Our main result is that responsiveness to earned disagreement payoffs indeed depends on: (1) the bargaining institution; and (2) whether either subject has dominant bargaining power. When subjects bargain in the NDG and neither of them has dominant bargaining power, we observe severe under–responsiveness. In the UBG with no dominant bargaining power, subjects are substantially more responsive than in the NDG, but still less so than theory predicts. When one bargainer does have dominant bargaining power, by contrast, own– and opponent–disagreement–payoff effects are significantly larger. In the NDG, this increase still leaves responsiveness below the theoretically predicted level. In the UBG, however, the increase leads to a level of responsiveness in line with the theory. Thus it takes the combination of a bargaining institution with low levels of strategic uncertainty and elimination of the 50–50 “security blanket” for bargaining behaviour to yield outcomes like those predicted by the theory.

2 The bargaining environment

There is a fixed sum of money (a cake) of size M available to the players. Negative payments are not possible, so a feasible agreement is a non–negative pair totalling M or less. If bargaining is unsuccessful, the players receive disagreement payoffs: the favoured player receives D_f and the unfavoured player receives D_u, with $D_f \geq D_u \geq 0$ and $D_f + D_u < M$. The values of M, D_f and D_u are assumed to be common knowledge. We use the term surplus to mean the amount of cake remaining after subtracting the sum of the disagreement payoffs ($M - D_f - D_u$); this positive quantity represents the gains available to be made from successful bargaining.

![Figure 1: The bargaining environment](image-url)

2.1 Nash demand game (NDG)

In the Nash (1953) demand game, bargaining consists of a single pair of simultaneously made demands X_f and X_u by the favoured and unfavoured players respectively. If the demands are compatible ($X_f + X_u \leq M$), then each player receives the amount demanded (with any remainder left “on the table”). If the demands are incompatible ($X_f + X_u > M$), then they receive their disagreement payoffs.

The NDG is simple enough to be analysed by standard non–cooperative techniques, but the result is not a unique prediction. Rather, if Nash equilibrium is the solution concept used, there is a large number of solutions, including...
(a) efficient pure–strategy equilibria in which \(X_f \geq D_f, X_u \geq D_u \) and \(X_f + X_u = M \), leading to payoffs \((X_f, X_u) \); (b) inefficient pure–strategy equilibria in which \(X_f > M - D_u \) and \(X_u > M - D_f \), with resulting payoffs \((D_f, D_u) \); and (c) inefficient mixed–strategy equilibria with expected payoffs totalling less than \(M \) but more than \(D_f + D_u \).

Equilibrium selection criteria such as payoff dominance or efficiency can reduce the set of equilibria, eliminating the inefficient equilibria mentioned above. Harsanyi and Selten’s (1988) criterion of risk dominance, as well as their general solution concept for non–cooperative games, go even further. Both make the unique prediction that players split the surplus evenly: \(X_f = \frac{1}{2}(M + D_f - D_u) \) and \(X_u = \frac{1}{2}(M - D_f + D_u) \).\(^3\) The same prediction is entailed by combining payoff dominance (or efficiency) with a notion of symmetry defined relative to the individually rational set (rather than the entire bargaining set).

2.2 Unstructured bargaining game (UBG)

In the unstructured bargaining game, players have a fixed, known amount of time available to negotiate a mutually agreeable division of \(M \). Either player can make proposals of the form \((X_f, X_u)\) with \(X_f, X_u \geq 0 \) and \(X_f + X_u \leq M \). There is no constraint (other than the time available) on the number, ordering and timing of proposals that can be made, and the cake size remains the same until the time runs out. Either player can accept any opponent proposal (i.e., proposals cannot be withdrawn); the first accepted proposal is implemented. (In case both players accept proposals at the same instant, each is implemented with probability one–half.) If no proposal is accepted before the time limit, the disagreement outcome is imposed.

The UBG is too complex to be analysed by standard non–cooperative game–theoretic methods unless additional assumptions are imposed.\(^4\) Instead, we make use of techniques from cooperative game theory. These techniques say little about the precise strategies used by the two players, but they have implications about what the outcome of bargaining is. The core predicts that the division of the cake corresponds to an efficient Nash equilibrium outcome \((X_f, X_u ; D_u)\) and \(X_f + X_u = M \), but makes no sharper prediction. Axiomatic bargaining solution concepts can refine this multiplicity of predicted outcomes to a unique one; however, they require an assumption about the relationship between monetary payments and payoffs. If the relationship is proportional (risk neutrality), then the outcome of every well–known axiomatic bargaining solution (including the Nash and Kalai–Smorodinsky solutions) coincides, with \(X_f = \frac{1}{2}(M + D_f - D_u) \) and \(X_u = \frac{1}{2}(M - D_f + D_u) \).

2.3 Disagreement–payoff effects

We will find it convenient to normalise the bargaining problem by dividing through by the cake size. Define \(x_f = \frac{X_f}{M}, x_u = \frac{X_u}{M}, d_f = \frac{D_f}{M} \) and \(d_u = \frac{D_u}{M} \). Then, the prediction of Nash equilibrium (with the additional assumptions of either risk dominance or efficiency and symmetry) for the NDG, and the predictions of the well–known axiomatic bargaining solutions for both the NDG and the UBG – discussed in the previous two sections – all imply the same

\(^3\)Risk dominance (Harsanyi and Selten, 1988) formalises the intuitive notion that when players have little information about the choices others will make, they will prefer strategies that are (in some sense) less risky. In the simplest case of a symmetric game with exactly two symmetric strict Nash equilibria \((s, s)\) and \((t, t)\), \((s, s)\) is risk dominant if the threshold probability of the opponent choosing \(s \) at which \(s \) becomes a best response is lower than the corresponding threshold probability for \(t \). In their text, Harsanyi and Selten extend this intuition for general non–cooperative games. Their general solution concept (presented in the same text), while different in that payoff dominance is prioritised over risk dominance, yields the same result here, since the risk dominant outcome is efficient and hence not payoff dominated by any feasible outcome.

outcome:

\[x_f = \frac{1}{2} (1 + d_f - d_u) \quad \text{and} \quad x_u = \frac{1}{2} (1 - d_f + d_u). \]

(1)

This solution implies

\[x_f - x_u = d_f - d_u \]

(2)

(the difference in the bargainers’ payoffs from bargaining is equal to the difference between their disagreement payoffs), or equivalently, \(x_f - d_f = x_u - d_u \) (bargainers gain equal amounts over their disagreement payoffs). Also, it implies a sharp theoretical prediction concerning the relationship between the individual disagreement payoffs and the bargaining outcome:

\[\frac{\partial x_f}{\partial d_f} = \frac{\partial x_u}{\partial d_u} = \frac{1}{2} \]

(3)

\[\frac{\partial x_f}{\partial d_u} = \frac{\partial x_u}{\partial d_f} = -\frac{1}{2}. \]

(4)

That is, both the “own–disagreement–payoff effect” and the “opponent–disagreement–payoff effect” have magnitudes of 0.5.

An obvious corollary is that the sum of these magnitudes (the “combined [disagreement–payoff] effect”) is one:

\[\left| \frac{\partial x_f}{\partial d_f} \right| + \left| \frac{\partial x_f}{\partial d_u} \right| = \left| \frac{\partial x_u}{\partial d_f} \right| + \left| \frac{\partial x_u}{\partial d_u} \right| = 1. \]

(5)

Indeed, even some bargaining solutions that do not imply own– and opponent–disagreement–payoff effects of one–half still imply that their combined effect is exactly one (e.g., the generalised Nash solution that maximises the expression \([x_f - d_f]^{\theta} [x_u - d_u]^{1-\theta}\) for given \(\theta \in [0, 1]\)). Also, Anbarci and Feltovich (2013) show that when bargainers are risk averse with (possibly different) constant absolute risk aversion preferences, both risk dominance and the standard Nash solution imply a combined effect of exactly one, and if either has constant relative risk aversion preferences instead, the combined effect is at least one.

3 Related literature

We will not go into detail here regarding the huge literature on bargaining experiments in general (for surveys, see Roth, 1995 and Camerer, 2003, pp. 151–198). Despite this expansive literature, there has been very little research into the effects of disagreement outcomes in particular. What previous work there has been has usually varied disagreement outcomes as a “side–treatment”, in conjunction with some other manipulation intended to address the primary research question. Hoffman and Spitzer (1982) examined unstructured bargaining games with (in essence) a fixed, known cake size and one of two randomly chosen disagreement outcomes. In their setup, an agreement involved bargainers settling on one of a small number of payment pairs, but side–payments were allowed; thus, under some weak assumptions, one can consider their bargaining set to have a fixed cake size. Rather than directly implementing

5In addition to the research discussed here, there is also a small literature (Kahn and Murnighan, 1993; Binmore et al., 1998; Oosterbeek, Sonnemans and van Velzen, 2003; Feltovich and Swierzbinski, 2011) looking into the effects of varying outside options in bargaining settings. Outside options differ from disagreement payoffs in that they must be chosen in lieu of bargaining, rather than being available afterwards in the event bargaining fails; they therefore represent less bargaining power than a comparable disagreement payoff. Despite this distinction, typical findings in this literature are similar to those found in experiments with disagreement payoffs. Subjects often make minimal use of their bargaining power, with 50–50 splits common except when the outside option is larger than half of the cake, in which case the favoured player receives the outside option or slightly more (the “deal me out” outcome).

6In their setup, an agreement involved bargainers settling on one of a small number of payment pairs, but side–payments were allowed; thus, under some weak assumptions, one can consider their bargaining set to have a fixed cake size.
“Decision 2”. Hoffman and Spitzer found a substantial frequency of equal splits of the cake, even though such splits require some bargainers to agree to payments well below their disagreement payoffs. Their results taken at face value would suggest that dominant bargaining power has little influence on bargaining outcomes; however, this may carry little implication for our experiment, due to the lack of anonymity in their procedures (not only did their experiment use face–to–face bargaining, but subjects reaching agreement were required to jointly sign a record sheet).

With equal splits frequently occurring even in settings like Hoffman and Spitzer’s, where they are not individually rational (and thus not an equilibrium outcome), it is perhaps not surprising that a strand of the literature has been devoted specifically to the focal nature of equal splits in bargaining. Besides the well–known phenomena of 50–50 splits in ultimatum and dictator games (Roth, 1995, pp. 254–292; Camerer, 2003, pp. 48–59) and in symmetric bargaining games (see Note 10), there have been several recent experiments showing large differences in behaviour according to whether 50–50 splits are available. Güth, Huck and Müller (2001) considered binary ultimatum games where proposers have only two pure strategies: a demand of 85% of the cake and, depending on the treatment, 45%, 50% or 55%. They found that demands of 85% were substantially less frequent when the alternative was 50% (a proposal of an equal split) than when the alternative was either of the other two demands. Falk, Fehr and Fischbacher (2003), also looking at binary ultimatum games, found that responders reject demands of 80% of the cake much more often when the proposer’s alternative was a 50% demand than when the alternative was a 100% demand, a 20% demand or another 80% demand. Levati, Nicholas and Rai (2014) elicit preference orderings over outcomes for second movers in a trust game, and dictators in a dictator game, and find that when 50–50 splits are an available option, these subjects are much more likely to submit preferences that are non–single–peaked (and thus inconsistent with own–monetary–payoff maximisation as well as nearly all standard models of other–regarding preferences). Janssen (2006) discusses 50–50 splits as a focal point in both the ultimatum game and the Nash demand game, while Andreoni and Bernheim (2009) present examples of the 50–50 norm in the field and report experimental results suggesting that subjects conform to this norm more closely when deviations can be attributed to themselves (rather than luck).

There is also a rich theoretical literature examining the effects of introducing a small amount of incomplete information into the environment: namely, a low but positive probability that one’s opponent is “irrationally” or “obstinate” unwilling to accept any offer below some threshold amount. Myerson (1991, pp. 399–403) showed that even when both individuals are rational, the existence of these irrational types implies that each bargainer will receive no less than (approximately) the corresponding threshold amount, since rational bargainers in an unfavourable position can mimic the irrational types’ behaviour. (See also Abreu and Gul, 2000, and Compte and Jehiel, 2002.) Such a model, applied to our bargaining environment, could predict a preponderance of roughly 50–50 splits (and more generally, lower responsiveness to disagreement payoffs than under common knowledge of rationality) as long as neither side has dominant bargaining power, since a few irrational types insisting on 50% shares of the cake will make it profitable for unfavoured players to mimic them.

The first bargaining experiment with “earned” bargaining power was Hoffman and Spitzer’s (1985) follow–up to their 1982 study. In some of their cells, favourable bargaining position was assigned randomly, while in others, it was assigned based on performance in a game of skill. Perhaps surprisingly, the way favoured status was assigned had only a minor effect; rather, their data indicate that in order for subjects to exploit their bargaining position, it
must be that both (1) bargaining power is perceived by subjects to be earned (their “game trigger” treatment), and (2) instructions make clear that exploiting bargaining power is acceptable behaviour (their “moral authority” treatment), with the latter more important than the former. However, even with both a game trigger and moral authority, the favoured player’s average payoff from bargaining was still less than her disagreement payoff, though as before, the lack of subject anonymity in the experiment may limit applicability to our study.

Since Hoffman and Spitzer, effort and/or skill have been used in several papers to allocate bargaining roles, typically for ultimatum or dictator games (Hoffman et al., 1994; Schurter and Wilson, 2007; Bolton and Karagözoğlu, 2012). In these bargaining settings, under–responsiveness to changes in bargaining position arises naturally from theoretical predictions being on opposite endpoints of the outcome space, but even so, the evidence is fairly mixed about the impact of earned bargaining power. For example, Schurter and Wilson (2007) found dictator–game offers were lower when the dictator position is assigned via a quiz than via a die roll, but they were lower still when it was assigned on the basis of seniority (number of credit hours completed or attempted). Other experiments have used effort and/or skill for reasons other than allocating bargaining power: e.g., to determine the cake size (Ruffle, 1998; Konow, 2000; Cherry et al., 2002; Parrett, 2006; Oxoby and Spraggon, 2008; Karagözoğlu and Riedl, 2010; Birkeland, 2011; Corgnet et al., 2011) or to give one bargainer “moral authority” to receive a larger share of the cake (Gächter and Riedl, 2005; Karagözoğlu and Riedl, 2013; Bolton and Karagözoğlu, 2012). It is worth noting that much of the recent work in this strand of the literature did not explicitly test tasks versus luck (as we also do not). Rather, at this point the consensus seems fairly well established that subjects take their decisions more seriously when some aspect of the setting has been “earned”, and real–effort tasks (and related devices like quizzes) have now become part of the experimental economist’s tool–box, without the need to re–evaluate them in every new setting.

Separately, a small literature has emerged looking at how bargaining outcomes depend on bargaining positions based on exogenous disagreement outcomes, varied systematically through multiple values. Fischer, Gächter and Pull (2007) examine a variant of the NDG, where players simultaneously submit an ambitious demand \(x_i \) and a (typically smaller) fallback demand \(g_i \). They receive their ambitious demands if they are compatible; if not, they each get their fallback demand if these are compatible, or disagreement payoffs \(d_i \) if not. (We alter their notation somewhat, to parallel ours.) Their main research question was how behaviour in this game compared with behaviour in an ultimatum game, but they used eleven disagreement outcomes with perfect negative correlation between own and opponent disagreement payoffs. This correlation prevents separate measurement of own– and opponent–disagreement–payoff effects, but one can still compute the combined effect. On average, their NDG results imply that \(|\partial x_i / \partial d_i| + |\partial x_i / \partial d_{-i}| \approx 0.38 \) and \(|\partial g_i / \partial d_i| + |\partial g_i / \partial d_{-i}| \approx 0.41 \): that is, observed responsiveness to disagreement outcomes was roughly two–fifths of the theoretical prediction.

Finally, Anbarci and Felteovich (2013) had subjects bargaining in either the NDG or the UBG, with disagreement payoffs varying from 5% to 45% of the cake, and drawn randomly in each round. They found that in the NDG, the own–disagreement–payoff effect \(|\partial x_i / \partial d_i| \) was about 0.2 and the opponent–disagreement–payoff effect \(|\partial x_i / \partial d_{-i}| \) was about 0.38.

8There is an earlier literature in which bargaining position was varied; see, for example, Binmore et al. (1991) and Ochs and Roth (1989). Like Hoffman and Spitzer (1982), these studies tended to manipulate bargaining power only through a small number of discrete cells (though “small” is a relative term, since Kahn and Murnighan’s (1993) 2x2x2x2 design had 16 different equilibrium payoff predictions). A consistent result is that subjects fail to fully exploit their bargaining power, though the extent to which they do so varies tremendously across experiments. For example, a one–unit increase in a subject’s predicted payoff was associated with only a 0.07–unit increase in her observed payoff in Ochs and Roth’s experiment, as compared to an increase of two–thirds of a unit in Binmore et al.’s.

9Harrison (1987) also varies disagreement payoffs in an unstructured bargaining game, but with perfect positive correlation between disagreement payoffs; his “Type 1 game” has a disagreement outcome of (0, 0), while in his “Type 3 game”, both players receive equal positive payments in case of disagreement.
was slightly lower, yielding a combined effect roughly comparable to Fischer, Güth and Pull’s (2007). In the UBG, both effects were about 0.3 – significantly more than in the NDG, but still only about 60% of the predicted level. Anbarci and Feltovich also showed that other–regarding preferences, along the lines of Fehr and Schmidt’s (1999) “inequity aversion”, can explain the low values of $|\partial x_i/\partial d_i|$ and $|\partial x_i/\partial d_{-i}|$, while either risk aversion or quantal response on its own cannot.

4 The experiment

In our experiment, subjects’ disagreement payoffs were determined endogenously, based on performance on a real–effort task. The task itself is described next, with some details of its implementation and other aspects of the experimental procedures discussed in Section 4.2, followed by hypotheses in Section 4.3.

4.1 The real–effort task

The task, adapted from the one used by Erkal et al. (2011) to suit our design, was computerised, and was qualitatively similar for all subjects in the experiment. A sample screen–shot is shown in Figure 2. The basic unit of the task was the encoding of a sequence of 2–9 letters (a “word”) into numerals, based on a key that was displayed on the computer screen for the entirety of the task. Below each letter of the word was a blank space; to encode the word, the subject needed to type the numeral corresponding to each letter in the space below it, then click a button once the entire word was encoded. If the word was encoded correctly, it was accepted and the word was replaced by a new word. If the word was encoded incorrectly, an error message stated the incorrectly–encoded letter (or the first, if there were multiple errors), and the subject could go back and make changes as desired.

At the beginning of a round, a sequence of 400 letters was randomly drawn (with replacement); each letter had an equal chance of being chosen for any given place in the sequence. At the same time, the key – a permutation of $(1, 2, \ldots, 26)$ – was randomly chosen from the set of all such permutations. Thus, both the key and the sequence of letters changed from round to round, though both were common to all subjects within a round of a session. Our use of a random sequence of letters means that the vast majority of our “words” were not actual words (in contrast with Erkal et al.’s task, which used a deterministic list of English words); this was done in order that subjects would not be privileged based on their ability to read English. Drawing a new key and sequence of letters in each round of each session was done in order to minimise differences across rounds due to memorisation.

Variation in task difficulty across rounds and subjects was accomplished by varying the lengths of the words. Each subject in each round was given words of changing lengths, drawn i.i.d. from a distribution that was fixed for that subject and round. At the beginning of a session, each subject was assigned a type (advantaged or disadvantaged) that remained fixed throughout the session. Both types of subject faced an easy and a hard version of the task; the four distributions are shown in Table 1. Note that for each type, the hard version of the task contained longer words, in the sense of first–order stochastic dominance, than the easier version. However, the advantaged player was always advantaged; even the disadvantaged/easy distribution contained longer words than the advantaged/hard distribution (again, in the sense of first–order stochastic dominance).

Assigning an easier version of the task to one subject in a pair than the other serves an important function in the experiment: it decreases the likelihood that the subjects will have equal or nearly equal disagreement payoffs. The reason this matters is that many previous experiments have shown symmetric bargaining games to have an extremely strong tendency toward 50–50 splits of the cake, and even when a small amount of asymmetry is present, the 50–50
norm provides a powerful focal point that can affect what outcome the pair does reach. Varying the difficulty within-subject allows a greater degree of variability of disagreement payoffs for individual subjects.

Relatedly, this design feature allows the difficulty of the task to be set so that one bargainer has a reasonable chance of earning a disagreement payoff more than 50% of the cake (so that equal splits are not individually rational, and hence not consistent with equilibrium) without a corresponding risk that both bargainers will do so (meaning that there would be no gains to agreement). We go even further by dividing the subjects into two fixed types, advantaged

10 See Nydegger and Owen (1975) and Roth and Malouf (1979) for experimental comparisons of symmetric and asymmetric bargaining.
and disadvantaged players, with the former always having an easier version of the task, and thus likely to have a higher disagreement payoff than their opponents in every bargaining round. If subjects expected to have a favourable bargaining position in some rounds but not in others, they might be amenable to more equal splits of the cake in rounds where they have the better position, on the grounds that they expect to make up for this in rounds where they have the worse position.\footnote{On the other hand, Binmore, Shaked and Sutton (1985) found the opposite effect – giving subjects experience in both bargaining roles can mitigate other-regarding preferences – while Bolton (1991) found no difference in behaviour between sessions with changing roles and those with fixed roles. Brandts and Charness (2011, pp. 393–394) provide a brief survey of “role reversal” in general experimental settings, and conclude that there is little evidence of any systematic effect.}

Except for an initial one-minute practice round, subjects were allotted five minutes in each round for the task. At the beginning of this time, a word length k_{1i} was drawn randomly from the relevant distribution for subject i. That subject’s first word would be made up of letters 1 through k_{1i} of the sequence that had been drawn for that round. When that word was correctly encoded, a new word length k_{2i} was drawn, independently of the previous word length, and the subject’s second word would comprise letters $k_{1i} + 1$ through $k_{1i} + k_{2i}$ of the sequence. In a similar way, the subject’s j–th word was made up of the next k_{ji} letters of the sequence. Thus, all subjects in a session faced the same sequence of letters; it was only the way the sequence was broken up into words that varied across subjects.

We would like to remark that implementing disagreement outcomes via real–effort tasks rather than exogenously – while possibly having the advantage that subjects internalise them to a greater extent – is not costless. One obvious cost of having disagreement payoffs depend on performance in the task is that the experimenter loses a modicum of control over these disagreement payoffs. Fischer, Güth and Pull (2007) and Anbarci and Feltovich (2013) were able to specify the exact disagreement outcomes subjects faced (in the former paper) or the exact distribution from which these outcomes were drawn (in the latter). In the current paper, we are unable to do so, since the outcomes depend on subjects’ behaviour. Indeed, even with the substantial difference in difficulty between the advantaged player’s and disadvantaged player’s tasks, we cannot guarantee that within a bargaining pair, the advantaged player will have the favoured bargaining position.

A second disadvantage concerns the time subjects spend on the real–effort task, which is time they are not spending on the bargaining game. The five minutes in each round allocated to the task itself, along with another half–minute for related aspects such as feedback, carry an opportunity cost of two to three rounds of bargaining in the UBG, or four to five rounds in the NDG, holding the length of the session constant. This has two negative implications: fewer data points of bargaining for a given length of session (and thus, roughly speaking, for a given budget for subject payments), and less opportunity for subjects to acquire experience in the bargaining task, leading to a higher variance in the data and more outliers (though on the plus side, the smaller number of rounds in our experiment implies higher stakes per bargaining round, so that subjects might be expected to take their decisions more seriously). Both of these implications complicate comparisons to previous studies that used endowed bargaining power.

Finally, there is no guarantee that our use of a real–effort task will succeed in getting subjects to view their bargaining power as earned. As we will discuss in the next section, we made the differences in task difficulty (within and between subjects) as opaque as possible, in an attempt to get subjects to view their bargaining power as arising from skill and effort rather than luck. However, it is possible that especially clever subjects could infer the role that luck played in determining their disagreement payoffs. It is also possible that some subjects may have considered the task itself to be sufficiently contrived that bargaining power based on performance on it would never be viewed as being earned. However, since we do not vary whether disagreement payoffs are earned, neither of these potential
issues would result in a loss of control. At worst, our experiment would reduce to a test of bargaining institution and dominant bargaining power with *endowed* rather than earned bargaining power.

4.2 Experimental design and procedures

All experimental sessions consisted of ten rounds, plus an initial practice round (round 0) with no bargaining and no effect on subjects’ payments. Rounds 1–10 were split into five two–round blocks; within each block, one round comprised task followed by bargaining, while the other consisted of the task only but was otherwise identical, allowing for a comparison of task performance with and without a subsequent bargaining round (see Appendix A).

In half of the sessions, bargaining took place in the even–numbered non–practice rounds, and in the other half of sessions, bargaining took place in the odd–numbered rounds (see Table 2). The cake size was always £10, and a subject’s disagreement payoff in all bargaining rounds was £0.15 for each word correctly encoded in that round. (In rounds with no bargaining, this amount became the subject’s payoff for the round.)

Each session, depending on its size, comprised one or more *groups*. A group contained equal numbers of advantaged and disadvantaged subjects – with these types randomly drawn before the practice round and fixed throughout the session – and was closed with respect to interaction. That is, advantaged subjects in a particular group interacted only with disadvantaged subjects in the same group, so that data from different groups can be considered statistically independent of each other.

Sessions took place at the Scottish Experimental Economics Laboratory (SEEL) at the University of Aberdeen. Subjects were primarily undergraduate and masters–level students from University of Aberdeen, and were recruited using the ORSEE software (Greiner, 2004) from a database of people expressing interest in participating in economics experiments. No one took part more than once. The experiment was run on networked personal computers, and was programmed using the z–Tree software package (Fischbacher, 2007). Subjects were asked not to communicate with other subjects except via the computer program.

At the beginning of a session, subjects were seated in a single room and given written instructions; these instructions were also read aloud in an attempt to make the rules of the game common knowledge.\(^{12}\) Once the instructions were read and questions answered, subjects were given a few demographic questions to answer.\(^{13}\) After all subjects had submitted their answers, the practice round began.

\(^{12}\)Sample instructions are shown in Appendix B. The remaining sets of instructions, as well as the raw data from the experiment, are available from the corresponding author upon request.

\(^{13}\)We do not use the responses to these questions in our analysis of bargaining outcomes, but in Appendix A we look at their ability to explain behaviour in the real–effort task.
Subjects were randomly matched to opponents in each bargaining round, with each opposite–type subject in the same group equally likely (a two–population protocol). No identifying information was given about opponents, in an attempt to minimise incentives for reputation building and other supergame effects. Also, to reduce demand effects, rather than using terms like “opponent” or “partner” for the other player, we used the neutral though somewhat cumbersome “player matched to you” and similar phrases.

Each round began with a screen displaying instructions for the real–effort task, which were also shown during the task itself. After a few seconds, the task would begin. The task difficulties in each round are shown in Table 3. Notably, while we used no deception in the experiment, we did not provide specific information to subjects about how task difficulty varied within– or between–subjects. The only information they received was the sequence of words they faced in each round, and in bargaining rounds, the opponent’s number of words encoded (from which clever subjects might have been able to infer some information about others’ task difficulty).

Rounds without bargaining ended after the time allotted for the task had run out, with a feedback screen displaying the number of words the subject had correctly encoded, as well as the subject’s payoff of £0.15 per word. In rounds with bargaining, after the task finished, subjects were informed of the number of words they and their opponent had encoded, and the corresponding disagreement payoffs of £0.15 per word; they were also reminded of the cake size of £10. After viewing their disagreement outcome, subjects in the NDG treatment were prompted to choose their demands. Demands were required to be whole–number multiples of £0.01, between zero and the cake size inclusive.\(^{14}\) After all subjects had chosen their demands and clicked to continue, they received end–of–round feedback: own and opponent words encoded and disagreement payoffs, own and opponent demands, whether agreement was reached, and own and opponent payoffs. Previous results were also collected into a history table at the top of the computer screen; this could be reviewed at any time. After all subjects clicked a button on the screen to continue, the session proceeded to the next round.

In the UBG cells, subjects were given a 120–second “negotiation stage” (130 seconds in the first block) to reach agreement on a division of the cake. Figure 3 shows a sample screen viewed by subjects during this time. Subjects could make as many or as few proposals as they wished during the 120 seconds; a proposal consisted of a nonnegative

\(^{14}\)Our restriction of NDG demands and UBG proposals to hundredths of a pound, necessitated by the discreteness of money, has minor effects on theoretical predictions. In particular, when the sum of disagreement payoffs is an odd number of pence, there is no longer a unique prediction according to symmetry, risk dominance and the axiomatic bargaining solutions; instead, there will be two distinct predictions, differing by one penny, and instead of each player receiving exactly half of the surplus, each receives half of the surplus plus/minus £0.005. For example, for a disagreement outcome of (£3.00, £3.15), all of these concepts predict agreements of either (£4.93, £5.07) or (£4.92, £5.08).

<table>
<thead>
<tr>
<th>Round(s)</th>
<th>Task difficulty</th>
<th>Time allotted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Advantaged player</td>
<td>Disadvantaged player</td>
</tr>
<tr>
<td>0 (practice)</td>
<td>Hard</td>
<td>Hard</td>
</tr>
<tr>
<td>1–2</td>
<td>Hard</td>
<td>Hard</td>
</tr>
<tr>
<td>3–4</td>
<td>Hard</td>
<td>Easy</td>
</tr>
<tr>
<td>5–6</td>
<td>Easy</td>
<td>Easy</td>
</tr>
<tr>
<td>7–8</td>
<td>Easy</td>
<td>Hard</td>
</tr>
<tr>
<td>9–10</td>
<td>Hard</td>
<td>Easy</td>
</tr>
</tbody>
</table>
multiple of £0.01 for the sender and one for the receiver, adding up to the cake size or less. There were no other constraints on proposals; e.g., later proposals did not have to be more generous than earlier ones, and it was not necessary to wait for the opponent to counter before making the next proposal. Proposals could not be withdrawn once made, and no messages were possible apart from the proposals.\footnote{Our prohibition of cheap talk, and the restriction of negotiation to computers rather than face–to–face interaction, were intended to maintain anonymity between bargainers in the experiment. This is important, as removing this anonymity opens up the possibility of side–payments or threats outside the laboratory. However, we acknowledge that lack of anonymity can be an important feature of some real bargaining situations. We also note that a side consequence of both of these design choices is they keep the level of social distance between the bargainers relatively high. Some research (e.g., Hoffman, McCabe and Smith, 1996; Bohnet and Frey, 1999; Rankin, 2006) has found that lower levels of social distance are associated with a greater prevalence of other–regarding behaviour.} Both the subject’s own proposals and the proposals of the opponent were displayed on the subject’s screen (in separate areas); it was not possible to view proposals for other pairs of subjects. As long as the negotiation stage hadn’t ended, a subject could choose to accept any of the opponent’s proposals, at which time that proposal would become binding. The opponent’s proposals were listed in order of increasing payoff to the subject, so there was almost no cognitive effort required to determine the most favourable opponent proposal (it was always at the bottom of the list), though subjects were free to accept less favourable proposals if they wished. The negotiation stage ended if a proposal was accepted, if either subject in a pair chose to end it (by clicking a button on the screen), or if the time had expired without an accepted proposal; in these latter two cases, the disagreement outcome was imposed. In any case, after the negotiation stage ended,
subjects received end–of–round feedback: own and opponent words encoded and disagreement payoffs, whether agreement was reached, and own and opponent payoffs. As in the NDG cells, subjects’ previous results were also available in a history table.

At the end of round 10, the session ended and subjects were paid, privately and individually. For each subject, two bargaining rounds and two task–only rounds were randomly chosen, and the subject was paid his/her earnings in those four rounds. There was no show–up fee. Total earnings averaged £19.40 for favoured subjects (with a standard deviation of £2.96) and £13.34 for unfavoured subjects (with a standard deviation of £2.17), for a session that typically lasted about 90–100 minutes (including about 10 minutes devoted to instructions, and another 10 minutes for other administration such as collecting consent forms).

4.3 Hypotheses

Our null hypotheses can be summarised as follows:

Hypothesis 0 For both games, and irrespective of the distribution of bargaining power between the players, demands and payoffs respond fully to changes in the disagreement outcome.

That is, a one–unit increase in a player’s own disagreement payoff is associated with a one–half–unit increase in that player’s demand and payoff, and a one–unit increase in the player’s opponent’s disagreement payoff is associated with a one–half–unit decrease in that player’s payoff. These are the implications of standard theory, as described in Section 2.3 (see Equations 3 and 4). The obvious alternative hypothesis, based on the usual finding in the literature of under–responsiveness to bargaining power (see Section 3), is

Hypothesis 1 For both games, and irrespective of the distribution of bargaining power between the players, demands and payoffs under–respond to changes in the disagreement outcome.

That is, a one–unit increase in a player’s own disagreement payoff is associated with a smaller–than–one–half–unit increase in that player’s demand and payoff, and a one–unit increase in the opponent’s disagreement payoff is associated with a smaller–than–one–half–unit decrease in that player’s payoff.

In addition, we conjecture about the effects of the bargaining institution and the distribution of bargaining power. In regard to the former, Feltovich and Swierzbinski (2011) compared bargaining environments with features similar to our NDG and UBG and found differences in the types of agreements reached. Specifically, a large fraction of agreements in their analogue to the NDG were close to the 50–50 split, while agreements in their analogue to the UBG tended to better reflect the distribution of bargaining power. This result implies the following hypothesis for the current study:

Hypothesis 2 Responsiveness to changes in the disagreement outcome will be higher in the UBG than in the NDG.

Regarding the latter, we conjecture that while the attraction of the 50–50 split tends to be strong in bargaining experiments, this power will be sharply reduced when the favoured player has a disagreement payoff more than one–half of the cake size (*dominant bargaining power*). In this case, the 50–50 split is no longer an equilibrium outcome, and is therefore lost as a potential focal point. As a result, the power of alternative focal points – most notably, the theoretical prediction – should increase correspondingly. This gives rise to our last hypothesis:

Hypothesis 3 Responsiveness to changes in the disagreement outcome will be higher when the favoured player has dominant bargaining power than when neither player does.
5 Experimental results

The experiment comprised twenty-four independent groups – six for each cell (NDG–odd and –even; UBG–odd and –even) – with a total of 176 subjects (see Table 2). Hence, our experimental design is perfectly counterbalanced at the group level, so we are able to pool the –odd and –even cells within each game when we use group–level data. However, due to variability in show–up rates across sessions, not all groups were the same size, so our design is not counterbalanced at the individual level, and we will have to include controls for game and ordering when we use individual–level data.

In our analysis, we will typically express quantities like demands, payoffs, and disagreement outcomes as fractions or percents of the cake size, as in Section 2.3. We will concentrate on four sub–samples of the experimental data–set. In the NDG, each subject makes a single demand, which may or may not lead to agreement. Our first sub–sample will comprise all bargaining pairs in the NDG (we will often call this “NDG–all”) – giving us one demand for each member of the pair, for all NDG pairs over all rounds. Our second sub–sample is a subset of the first, comprising only pairs whose demands were compatible. In this “NDG–agreements” sub–sample, we will again have one demand for each member of the pair, for all NDG pairs in any round in which they reached agreement.

In the UBG, each subject may make a single proposal, multiple proposals, or no proposals at all. Each proposal made by a subject could be interpreted as a demand by that subject. Moreover, a subject’s acceptance of an opponent proposal, and even failure to accept a proposal, can be construed as carrying information about demands. Inferring a single demand from all of a subject’s behaviour in a UBG round carries a big subjective element. To minimise this subjectivity in analysing our data–set, we classify UBG demands based on unambiguous rules. Our “UBG–agreements” sub–sample is straightforward. We interpret each accepted proposal in the UBG as a pair of compatible demands; if a pair does not reach an agreement, it is left out of this sub–sample. Our “UBG–all” subsample includes these demands, but additionally, in cases where agreement was not reached, we examine the sequence of proposals and counter–proposals to find the lowest amount each bargainer proposed for him/herself. If this lowest amount exists (i.e., if the subject made at least one proposal), this was taken to be the demand. If a subject made no proposals and did not accept any opponent proposals, that subject was left out of this subsample. (This happened only once in 440 UBG observations.) It is worth noting that for both UBG and NDG, demands conditional on agreement are identical to payoffs conditional on agreement.

5.1 Preliminaries

Table 4 presents some statistics about the real–effort task, and hence disagreement outcomes. As already noted, it is possible for a subject with an easier task (the advantaged player) nevertheless to encode fewer words (and thus be the unfavoured player in the subsequent bargaining game). Indeed, since the word–length distributions of the four versions of the task have overlapping support (see Table 1), it is not even possible a priori to rule out the possibility that within a bargaining pair, the advantaged player actually had the easier task. However, the top portion of Table 4 shows that it was never the case that any advantaged player actually faced even a weakly more difficult task than any disadvantaged player (which of course is even stronger than showing that within a pair, the advantaged player always had the easier task).

The middle portion of the table shows that there was substantial heterogeneity in task performance (words encoded) within a type (advantaged or disadvantaged) and task level, leading to non–negligible overlap in the two types’ performance. As an illustration, notice that an advantaged player who encodes one standard deviation less than the mean in the hard task would have performed worse than a disadvantaged player who encodes one standard
deviation more than the mean in the easy task. If these two were paired in either bargaining game, therefore, the disadvantaged player would have the favourable bargaining position.

The bottom portion of the table shows that within a bargaining pair, the advantaged player usually, but not always, becomes the favoured player. In about 5.5% of pairs, the advantaged player earns a lower disagreement payoff than the disadvantaged player; in another 2.2%, the bargaining game is symmetric (disagreement payoffs are equal). Also, in just under one-quarter of pairs, the advantaged player encodes enough words in a bargaining round to earn a disagreement payoff larger than £5, giving her dominant bargaining power. Finally, the last row portion of the table tells us that it was always the case that there were gains to be made from agreement: the bargainers’ disagreement payoffs never totalled the cake size or more.

5.2 Aggregate behaviour

Some aggregate bargaining results are presented in Table 5. The first row shows that agreements (compatible demands in the NDG, accepted proposals in the UBG) are more frequent in the game (UBG) with less strategic un-
certainty. The remainder of the table shows, for both games, the mean disagreement payoff for both advantaged and disadvantaged subjects; the fraction of observations with dominant bargaining power (a disagreement payoff larger than half the cake size); and both types’ mean demands, both unconditional and conditional on agreement. The table also shows the corresponding statistics for favoured and unfavoured subjects. We can see that results are not extremely sensitive to whether we categorise by disadvantaged/advantaged or favoured/unfavoured status, so we will concentrate on the latter.

One result suggested by Table 5 is that the favoured player makes some, but only limited, use of her better bargaining position. In the NDG, favoured subjects’ disagreement payoffs are higher than their opponents’ by an average of 17% of the cake (i.e., 17 percentage points), but overall, they demand only 8% more of the cake, and conditional on agreement, the difference is only about 6% of the cake. This under-exploitation of bargaining power is less stark in the UBG, but still present: on average, despite having a higher disagreement payoff by over 16% of the cake, the favoured player demands only 11% more of the cake, and the difference is the same in agreements.

Table 6 reports corresponding non-parametric test results. The first row shows that subjects do take account of their bargaining power, as favoured players’ demands are significantly higher than unfavoured players’ – for all four sub-samples (two-tailed Wilcoxon signed-ranks test, group-level data, \(p < 0.01 \)). On the other hand, the second row shows that they significantly under-exploit their bargaining power; the difference is demands between favoured and unfavoured players is significantly less than the difference in their disagreement payoffs (\(p < 0.01 \) for all four samples). Finally, the bottom row gives evidence of systematic differences between the UBG and NDG treatments. Specifically, the difference \((x_f - x_u) - (\text{disadvantaged})\) of subjects exploit their bargaining power, is significantly less (larger in magnitude) in the NDG than in the UBG. This means that subjects are more under-responsive to disagreement payoffs in the NDG than in the UBG; that is, subjects more fully exploit their bargaining power in the UBG.

Next, to illustrate more detail about how subjects respond to their bargaining position, we disaggregate the data according to three characteristics. First, we classify the favoured subject’s bargaining power according to which interval \(d_f - d_u\) falls in: \([0, 0.05), [0.05, 0.1), \ldots, [0.4, 0.45)\) or \([0.45, 0.5]\). Second, we classify the bargaining
outcome according to which interval \(x_f - x_u \) falls in: \([-1, -0.15]\), \((-0.15, -0.05]\), \((-0.05, +0.05]\), ..., \((+0.35, +0.45]\), \((+0.45, +0.55]\) or \((+0.55, +1]\). Third, we note whether the favoured subject had dominant bargaining power. Then, for each (disagreement–outcome, bargaining–outcome) pair, we plot a white circle with area proportional to the total number of outcomes in that interval pair, and a black circle with area proportional to the number of outcomes with dominant bargaining power, so that the area of the region inside the white circle but outside the black circle represents the number of outcomes with \(d_f < 0.5 \). The result is shown in Figure 4. For comparison, each panel

<table>
<thead>
<tr>
<th>(x_f > x_u)</th>
<th>(x_f - x_u < d_f - d_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p \approx 0.001)</td>
<td>(p < 0.001)</td>
</tr>
<tr>
<td>(p \approx 0.005)</td>
<td>(p < 0.001)</td>
</tr>
</tbody>
</table>

\(X \) outcome according to which interval \(x_f - x_u \) falls in: \([-1, -0.15]\), \((-0.15, -0.05]\), \((-0.05, +0.05]\), ..., \((+0.35, +0.45]\), \((+0.45, +0.55]\) or \((+0.55, +1]\). Third, we note whether the favoured subject had dominant bargaining power. Then, for each (disagreement–outcome, bargaining–outcome) pair, we plot a white circle with area proportional to the total number of outcomes in that interval pair, and a black circle with area proportional to the number of outcomes with dominant bargaining power, so that the area of the region inside the white circle but outside the black circle represents the number of outcomes with \(d_f < 0.5 \). The result is shown in Figure 4. For comparison, each panel

Table 6: Aggregate statistics – \(p \)-values from non–parametric tests

<table>
<thead>
<tr>
<th>Within–game tests</th>
<th>NDG (all)</th>
<th>NDG (agreements)</th>
<th>UBG (all)</th>
<th>UBG (agreements)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_f > x_u)</td>
<td>(p \approx 0.001)</td>
<td>(p \approx 0.005)</td>
<td>(p < 0.001)</td>
<td>(p < 0.001)</td>
</tr>
<tr>
<td>(x_f - x_u < d_f - d_u)</td>
<td>(p < 0.001)</td>
<td>(p < 0.001)</td>
<td>(p < 0.001)</td>
<td>(p \approx 0.002)</td>
</tr>
</tbody>
</table>

Between–game tests

\((x_f - x_u) - (d_f - d_u) \) smaller in NDG

\(p < 0.01 \)

\(p \approx 0.02 \)

<table>
<thead>
<tr>
<th>NDG (all) vs. UBG (all)</th>
<th>NDG (agreements) vs. UBG (agreements)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p < 0.01)</td>
<td>(p \approx 0.02)</td>
</tr>
</tbody>
</table>

Wilcoxon signed–rank test used for within–game tests, robust rank–order test used for between–game tests. Both use group–level data and two–tailed rejection regions.

Figure 4: Bargaining outcomes, disaggregated by difference in disagreement payoffs. Circles’ areas are proportional to numbers of occurrences; horizontal lines represent equal splits of the cake; diagonal solid lines represent equal splits of the surplus; diagonal dotted lines represent least–squares fits to data for \(d_f > 0.5 \) and \(d_f < 0.5 \).
shows the horizontal line segment corresponding to a 50–50 split and the diagonal segment corresponding to the theoretical prediction of an equal split of the surplus. Finally, each panel shows two dotted OLS trend lines that illustrate the association between relative bargaining position and bargaining outcomes: one each for pairs with and without dominant bargaining power.

Each panel shows a considerable amount of heterogeneity in outcomes, even across pairs with similar relative bargaining positions. The large circles along the horizontal line segments highlight the focal nature of the 50–50 norm, though the relative dearth of black circles here indicates that when equal splits are not individually rational, they seldom occur. The trend lines labelled “$d_f < 0.5$” show that when neither subject in a pair has dominant bargaining power, outcomes only weakly reflect differences in bargaining power: these trend lines have intercepts near the origin and slopes that, while positive, are well below their theoretical predictions, especially in the NDG. The intercepts near the origin also imply that there is continuity in behaviour as $d_f - d_u$ approaches zero; i.e., there is no apparent effect due to either favoured status or symmetric bargaining per se. Comparing the $d_f < 0.5$ and $d_f > 0.5$ trend lines in each panel, we see some evidence that situations with dominant bargaining power are treated differently. The more apparent difference is a shift, which implies a discontinuity in behaviour at $d_f = 0.5$. There is also a (less discernible) difference in slopes between the two trend lines in each panel, with the $d_f > 0.5$ line always weakly steeper than the $d_f < 0.5$ line. The differences in slopes are particularly noteworthy; they mean that subjects are more responsive to disagreement payoffs when one of them is more than half the cake size, than when neither is.

5.3 Parametric statistical analysis

We next use parametric methods to disentangle the effect of the disagreement outcome from other various factors that might influence bargaining outcomes in our experiment. We estimate models with demands (as fractions of the cake) as the dependent variable, separately for all pairs and agreements only, with pooled NDG and UBG for both, and leaving out the observations with a symmetric bargaining game (and thus no favoured or unfavoured player). For each sub-sample, we estimate two panel Tobit models: an unrestricted model and a restricted model. The primary explanatory variables in each model are the disagreement payoffs (d_i and d_{-i}), a UBG indicator, and their interactions. To measure whether bargaining behaviour is different when there is dominant bargaining power, we also include interactions between all of these variables and an indicator for dominant bargaining power. Our restricted models include only these variables and a constant term.

Our unrestricted models use these variables and additional ones. We add the block number (1–5), an indicator for bargaining taking place in odd-numbered rounds, and a favoured-player indicator – along with its interaction with the dominant–bargaining–power indicator, to allow for a shift as well as a change in slope at 50% of the cake. Finally, we include two variables meant to capture skill and effort in the real-effort task unconnected with favoured status: own and opponent letters encoded (the total number of letters in all words encoded). Each model is estimated using Stata (version 12), and incorporates individual–subject random effects.

Table 7 presents marginal effects (taken at variables’ means) and standard errors for each variable, and log likelihoods for each model. We note first that for both pairs of models, f–tests fail to reject the null that all of the extra coefficients in the unrestricted model are zero ($\chi^2_5 = 7.50$, $p \approx 0.19$ in Model 2; $\chi^2_5 = 2.63$, $p \approx 0.76$ in Model 4). Because of this, and since the results are fairly robust to which specification we use, we will focus on the restricted models.

The table shows two important results. First, when we do not distinguish between situations with and without dominant bargaining power, we replicate the finding from earlier work that subjects under–respond to disagreement

19
Table 7: Tobit regressions: marginal effects, and standard errors in parentheses

<table>
<thead>
<tr>
<th>Sub–sample:</th>
<th>NDG/UBG (all)</th>
<th>NDG/UBG (agreements)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation:</td>
<td>[1]</td>
<td>[2]</td>
</tr>
<tr>
<td>Own disagr. payoff (d_i)</td>
<td>0.330***</td>
<td>0.365***</td>
</tr>
<tr>
<td></td>
<td>(0.047)</td>
<td>(0.093)</td>
</tr>
<tr>
<td>Opp. disagr. payoff (d_{-i})</td>
<td>−0.184***</td>
<td>−0.186**</td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.094)</td>
</tr>
<tr>
<td>UBG</td>
<td>−0.002</td>
<td>0.033***</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Block</td>
<td>−0.006**</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Order (bargaining in odd rounds)</td>
<td>0.006</td>
<td>−0.002</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Favoured</td>
<td>−0.003</td>
<td>−0.003</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Letters encoded</td>
<td>−0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>(0.0003)</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>Opp. letters encoded</td>
<td>0.0002</td>
<td>−0.0000</td>
</tr>
<tr>
<td></td>
<td>(0.0003)</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>Constant term?</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(N)</td>
<td>859</td>
<td>859</td>
</tr>
<tr>
<td>(</td>
<td>\ln(L)</td>
<td>)</td>
</tr>
</tbody>
</table>

* (**, ***): Marginal effect significantly different from zero at the 10%, (5%, 1%) level.

payoffs. The own–disagreement–payoff effect, which is simply the marginal effect of the own–disagreement–payoff variable, varies across models from about 0.29 to 0.37, while the opponent–disagreement–payoff effect varies from about 0.18 to 0.30; all of these are clearly well below the predicted magnitude of 0.5. Second, neither the UBG indicator nor the dominant–bargaining–power indicator has much effect on the overall levels of demands, with the exception of the former’s small but significant positive effect in the sub–sample conditional on agreements.

Table 8 shows additional results based on Models 1 and 3. This table reports point estimates and 95% confidence intervals for the combined disagreement–payoff effect, taken at values of 0 and 1 for the UBG and dominant–bargaining–power indicators. This gives us the effects for all four combinations of NDG vs. UBG and with vs. without dominant bargaining power; reported both for all observations (Model 1) and for only agreements (Model 3). For both all observations and agreements, chi–square tests strongly reject the null hypothesis of equal effects in the four cases \(\chi^2_3 \approx 36.36\) for all observations and 53.76 for agreements, \(p < 0.001\) in both; therefore we also report \(p\)–values for pair–wise tests between NDG and UBG and between with and without dominant bargaining power (in each case, holding the other variable constant).

The results are broadly similar whether we focus on all bargaining pairs or agreements only, aside from a small (probably insignificant) across–the–board increase in responsiveness in the latter. In either case, subjects are least responsive to their bargaining power in the NDG with no dominant bargaining power; the combined effect of 0.222 (all) or 0.300 (agreements) is far below the theoretical prediction of 1, and indeed 1 is well outside either of the corresponding confidence intervals. Responsiveness is much higher – and significantly so – in the UBG without
dominant bargaining power, with point estimates of 0.649 and 0.709. However, this is still well below one, which again is outside both of the corresponding confidence intervals.

When the bargaining situation is one with dominant bargaining power, responsiveness to bargaining power increases, sometimes drastically. In the NDG, the difference is especially striking – a rise from 22% to 69% (over all observations) or from 30% to 79% (over agreements) of the theoretically–predicted level – and is significant, though even so, this leaves disagreement–payoff responsiveness still well below one. In the UBG, responsiveness increases from 65% to 82% (all observations), or from 71% to 91% (agreements), under dominant bargaining power compared to without it; these changes are also significant (though only at the 10% level in the case of all observations). In the case of agreements, the corresponding confidence interval contains one, meaning that we cannot reject the null hypothesis that subjects fully respond to changes in their bargaining power, while in the case of all observations, one lies just above the upper limit of the corresponding confidence interval.

6 Discussion and concluding remarks

When the bargaining setting involves a fixed, known cake size and a known disagreement outcome – the simplest case and the one most often incorporated into models by applied theorists – all of the commonly used analytical techniques that yield a unique prediction have the same implication (see Section 2). When a bargainer’s disagreement payoff increases by a unit, her payoff from bargaining should increase by one–half of a unit, and when her opponent’s disagreement payoff increases by a unit, her payoff should decrease by one–half of a unit. Then, overall responsiveness to bargaining power, given by the sum of these “own–“ and “opponent–disagreement–payoff effects” and called the “combined effect”, is predicted to be unity.

Whether this fundamental quantitative prediction holds in real bargaining settings is an empirical question, and previous studies (see Section 3) have found that subjects sharply under–react to changes in bargaining position, though the extent of this under–reaction varies widely across studies. In this paper, we examine some of the factors that may be associated with greater or lesser responsiveness to bargaining position. Subjects in our experiment bargain under one of two institutions, both widely used in theoretical modelling and experimental tests of bargaining: the Nash Demand Game (NDG) and the Unstructured Bargaining Game (UBG). Bargaining position is varied via the disagreement payoffs, which subjects earn by performing a real–effort task. Variation in task difficulty (both within– and between–subjects), combined with heterogeneity in subjects’ skill and effort, lead to a wide range of

Table 8: Point estimates and confidence intervals for combined disagreement–payoff effects, based on Models 1 and 3 from Table 7

<table>
<thead>
<tr>
<th>All bargaining pairs</th>
<th>NDG</th>
<th>UBG</th>
<th>sig. diff.?</th>
<th>Agreements</th>
<th>NDG</th>
<th>UBG</th>
<th>sig. diff.?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No d.b.p.</td>
<td>0.222</td>
<td>0.649</td>
<td>p < 0.001</td>
<td>0.300</td>
<td>0.709</td>
<td>p < 0.001</td>
<td></td>
</tr>
<tr>
<td>95% conf. int.</td>
<td>(0.066, 0.377)</td>
<td>(0.483, 0.814)</td>
<td>p ≈ 0.17</td>
<td>(0.162, 0.437)</td>
<td>(0.560, 0.857)</td>
<td>p ≈ 0.17</td>
<td></td>
</tr>
<tr>
<td>d.b.p.</td>
<td>0.690</td>
<td>0.824</td>
<td>p ≈ 0.17</td>
<td>0.786</td>
<td>0.913</td>
<td>p ≈ 0.17</td>
<td></td>
</tr>
<tr>
<td>95% conf. int.</td>
<td>(0.560, 0.820)</td>
<td>(0.685, 0.963)</td>
<td>p < 0.001</td>
<td>(0.649, 0.922)</td>
<td>(0.794, 1.032)</td>
<td>p < 0.001</td>
<td></td>
</tr>
<tr>
<td>Point estimates sig. diff.?</td>
<td>p < 0.001</td>
<td>p ≈ 0.09</td>
<td></td>
<td>p < 0.001</td>
<td>p ≈ 0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: d.b.p. = dominant bargaining power. sig. diff. = significantly different
disagreement outcomes. In particular, in about one–fourth of cases, one bargainer earns dominant bargaining power: a disagreement payoff more than half of the cake size.

Our main findings (see Table 8) confirm our conjectures. Observed responsiveness to disagreement payoffs increases as we move from the NDG to the UBG, likely due to the lower amount of strategic uncertainty and resultant less severe coordination problem (thus reducing the attractiveness of the 50–50 split) in the latter. Responsiveness is also higher with than without dominant bargaining power, as when 50–50 splits are no longer individually rational, they are no longer focal, so that bargainers have to rely on alternative focal points such as equal splitting of the surplus (the theoretical prediction). Both of these treatment effects are not only significant, but quite large in magnitude. Moving from the NDG without dominant bargaining power either to the UBG or to a situation with dominant bargaining power increases disagreement–payoff responsiveness by roughly 40 percentage points. From there, adding the other increases responsiveness by a further 12–20 percentage points. Indeed, in the UBG with dominant bargaining power, responsiveness approaches the theoretically predicted level (100 percent), and if we restrict consideration to agreements, the corresponding 95% confidence interval includes this point prediction. Thus in this case at least, we would not be able to reject the null hypothesis that subjects fully exploit their bargaining position. We acknowledge that this is a fairly weak claim, since it’s based on a failure to reject a null hypothesis that the claim is true (we equally couldn’t reject a null that responsiveness is only 80% of predicted), and the corresponding confidence interval for all demands does not include full responsiveness. However, even granting this caveat, our result is significant, as we are unaware of any other finding of approximately full exploitation of bargaining power in the literature.

We close with some implications for applied theorists and experimenters. First, our finding of a general under–responsiveness to disagreement payoffs, and the sensitivity of this responsiveness to the presence or absence of dominant bargaining power, highlight the importance of framing in bargaining experiments. We have no doubt that our results would have been quite different if our experiment had involved bargainers (a) being given their disagreement payoffs immediately, and (b) bargaining over the remainder. This setting is nearly isomorphic to ours (the only difference is that we allow individually irrational agreements), but we would expect outcomes in such a hypothetical experiment to cluster around 50–50 splits of the remainder, which would correspond to 100% responsiveness to disagreement payoffs in our actual experiment. If this is true, then the standard modelling technique of normalising the bargaining problem so that the disagreement outcome is (0, 0) is clearly not innocuous: absolute payoff amounts matter, not just payoffs relative to the disagreement point.

Second, the differences we find between NDG and UBG suggest that the way bargaining is modelled matters. Applications of bargaining in theoretical models tend to assume a bargaining process similar to our UBG (typically applying the Nash solution or a generalisation of this), while experimental tests of such models tend to use more highly abstracted bargaining games like the NDG, or even more commonly, the ultimatum game. Implementing bargaining this way carries the risk that the experimental results will not be generalisable back to the original strategic setting, above and beyond any other concerns about the external validity of lab experiments. This may actually be good news for theorists, since experimental results that seem inconsistent with standard theory may be at least partly an artifact of how the theory was implemented in the experiment, rather than owing to any intrinsic weakness of the theory itself.

Third, our results cast some light on how a descriptive theory of bargaining might look. Normative solution concepts that assume translation invariance, such as Nash’s (1950) and Kalai and Smorodinsky’s (1975), will have difficulty explaining the under–responsiveness to the disagreement outcome that we have observed. Anbarci and Feltovich (2013) showed that this kind of under–responsiveness cannot be attributed to risk aversion, but that it
is consistent with some models of other–regarding preferences. However, our different results for NDG and UBG suggest that other–regarding preferences are at best only part of the explanation, as we can see no plausible reason for individuals’ distastes for favourable inequality and for unfavourable inequality to differ according to the bargaining institution. If other–regarding preferences are to have an impact, it may be an indirect one, via their influence on focal points. An adaptation of the Harsanyi–Zeuthen (Zeuthen, 1930; Harsanyi, 1956) concession bargaining framework (which was designed for settings similar to our UBG), might be a useful route forward. Applied to our setting, bargainers’ initial proposals could be based on self–serving focal points (Babcock et al., 1997), and they would reduce their demands according to the Harsanyi–Zeuthen “critical risk ratio” (a measure of the demands’ relative distances from the corresponding disagreement payoffs). Such a model – with the favoured player initially demanding half of the surplus on top of her disagreement payoff, and the unfavoured player initially demanding half of the cake (or one minus his opponent’s disagreement payoff, in the case of dominant bargaining power) – should imply both under–responsiveness to disagreement payoffs and increased responsiveness when there is dominant bargaining power. It should also allow for differences between UBG and NDG, though it is not completely clear how to implement the model for the latter bargaining procedure. Future theoretical work in this direction may be productive.

References

A Do subjects consider under–responsiveness when choosing effort?

In our experiment, each non–practice block comprises two rounds, identical except that one has a bargaining stage and one is task–only. A natural question is whether subjects behave differently in task–only rounds, where the number of words encoded directly determines the payoff, compared with bargaining rounds, where payoff is based indirectly on words encoded, through the latter’s effect on the bargaining outcome. Even if subjects fully exploit their bargaining power, an additional word encoded in a bargaining round will yield only half as much revenue as one from a task–only round (assuming bargainers reach agreement). Since subjects actually under–respond, the difference in revenue per word between bargaining and task–only rounds will be even larger. (In the extreme case where bargaining outcomes were completely insensitive to disagreement payoffs – for example, if bargainers always agreed on 50–50 splits – encoding words in bargaining rounds would confer no extra revenue at all.) If subjects recognise this difference in marginal benefits, they ought to expend less effort in bargaining rounds than in task–only rounds. But do they?\(^{18}\)

We address this question with an additional regression, using letters encoded, rather than words, as our dependent variable. Our main explanatory variable is an indicator (“Bargain”) for a bargaining round. Additional variables are indicators for UBG, advantaged player, hard task, and bargaining in odd–numbered rounds (“Order”), as well as the block number (1–5). We also include all interactions amongst these six variables. Finally, we include the following demographic variables: Female (indicator), Age (positive integer), Econ (integer number of economics classes taken at university, bounded at 0 and 4) and Residence (ordinal variable for number of years living in the United Kingdom, with categories 0–1, 1–2, 2–5, 5–10 and 10+ coded as 0, 1, 2, 3 and 4). We used Stata (version 12), and incorporated individual–subject random effects.

Table 9 displays the main results (the demographic variables were all insignificant and are not shown). The negative overall marginal effect of “Bargain” is consistent with shirking, but its size is small. In the NDG, the effect is significantly different from zero, but its magnitude is only just over two letters per round, as compared to the average of 110 letters encoded per subject. In the UBG, the effect is even less – about half of a letter per round – and not significantly different from zero. The apparent, and weakly significant, difference in effect size between games makes sense, since subjects under–react more to disagreement payoffs in the NDG, yielding a lower expected payoff per word encoded and implying more shirking. However, their absolute magnitudes seem puzzling, as they suggest that subjects barely respond to the substantially lower expected returns in bargaining rounds compared to task–only rounds. There are several possible explanations for why this might be happening.

1. **Cognitive limits** Subjects may not understand that returns to encoding words are lower in bargaining rounds than task–only rounds, since the underlying logic is fairly subtle.

2. **Optimism/overconfidence** Subjects might overestimate the effect of their disagreement payoff on their bargaining outcome, either through overconfidence in their ability to negotiate, or through an optimistic assessment of the likelihood of being matched with a poor negotiator.

3. **Pessimism** Following a disagreement, subjects receive their disagreement payoffs, so in this case, the return to an additional word encoded is the same as in a task–only round. Overall, if \(\alpha\) is a subject’s subjective probability of reaching agreement in a bargaining round, the expected return to a word encoded in that round

\(^{18}\)One subject in the NDG treatment clearly understood this logic. After encoding 14, 15 and 16 words in the first three bargaining rounds, he encoded zero in each of the last two – in both cases demanding £4 in the subsequent bargaining game and getting it. For sake of comparison, he encoded 12 and 16 words in the task–only rounds in those two blocks.
Table 9: Regression results (marginal effects and standard errors) – letters encoded, non–practice rounds

<table>
<thead>
<tr>
<th>Marginal effects at means (std. errors)</th>
<th>Marginal effects by game (std. errors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bargain (round with bargaining)</td>
<td>-1.392***</td>
</tr>
<tr>
<td></td>
<td>(0.498)</td>
</tr>
<tr>
<td>UBG</td>
<td>2.820</td>
</tr>
<tr>
<td></td>
<td>(2.931)</td>
</tr>
<tr>
<td>Advantaged</td>
<td>-5.277*</td>
</tr>
<tr>
<td></td>
<td>(2.955)</td>
</tr>
<tr>
<td>Hard task</td>
<td>-0.797</td>
</tr>
<tr>
<td></td>
<td>(0.498)</td>
</tr>
<tr>
<td>Order (bargain in odd–numbered rounds)</td>
<td>-6.086**</td>
</tr>
<tr>
<td></td>
<td>(3.003)</td>
</tr>
<tr>
<td>Block</td>
<td>3.467***</td>
</tr>
<tr>
<td></td>
<td>(0.264)</td>
</tr>
<tr>
<td>Constant term?</td>
<td>Yes</td>
</tr>
<tr>
<td>Demographic variables?</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>1760</td>
</tr>
<tr>
<td>−ln(L)</td>
<td>6655.56</td>
</tr>
</tbody>
</table>

* (**,***): Coefficient significantly different from zero at the 10% (5%, 1%) level.

is £0.15 multiplied by $1 - \alpha + \alpha \frac{\partial p}{\partial u} (i = f, u)$, compared with £0.15 in a task–only round. If the subject’s α is close to zero (versus actual agreement frequencies of about 0.6 in NDG and 0.8 in UBG), then this multiplier will be close to one, so that the returns to encoding will be similar in bargaining and task–only rounds.

4. **Backward–bending labour supply** Some subjects’ labour supply curves might be negatively sloped over the relevant range of per–word rates, so that on average, the effect of a change in this piece rate is no discernible change in effort. Charness and Kuhn (2011) note that the observation of a backward–bending labour supply curve in lab experiments is puzzling, since it would imply an income effect large enough to outweigh the substitution effect (which on its own would imply a positive slope), even though the amounts at stake in lab experiments are typically small compared to subjects’ wealth levels. However, Andersen et al. (2012) have argued that subjects only partially integrate their lab earnings with their wealth outside the lab; if so, large wealth effects within the lab can be consistent with sensible behaviour outside the lab.

5. **Inelastic labour supply** It might simply be that subjects’ labour supply curves are very inelastic, so that the effect of changes in the per–word rate is so small that even a halving of the per–word rate would lead to a barely perceptible change in behaviour. This could be due to a corner solution in the labour–supply problem; either because the disutility of effort is very low, or because intrinsic motivation raises the benefits of effort, subjects could run out of time allocated for the task before they get tired of performing it.

These explanations are not mutually exclusive, and still other explanations may exist. Our experiment was not designed to test among these, but future work may try to do so.
B Instructions from the experiment

Below is the text of instructions for our UBG treatment with bargaining in even-numbered rounds, followed by the text of instructions for our NDG treatment with bargaining in odd-numbered rounds. The instructions for the other two treatments are analogous, and available from the corresponding author upon request.

[UBG instructions]

You are about to participate in a study of decision making. Please read these instructions carefully, as your payment may depend on how well you understand them. If you have any questions, please feel free to ask the experimenter. We ask that you not talk with the other participants – or anyone else – during the experiment.

The main part of this experiment consists of ten rounds. In each round, you will perform an encoding task. Your computer screen will display a “word” – a sequence of 1-10 letters of the alphabet – along with a key showing the number that corresponds to each letter. Below each letter on your screen will be a blank space. Inside each space, you should type the number that corresponds to the letter above it. Once you have encoded the entire word, click the “OK” button. If you have encoded the word correctly, the computer will accept it and display a new word. The key will stay the same for all words during a round, but may change from round to round.

Example: Suppose the key is as follows (this is just an example; the actual key might be different):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

Suppose the word you are given is G – A – J – F – J. The code for G is 7 (below G in the table), and the codes for A, J, F and J are 1, 2, 6 and 2. So, you would encode this word as 7 – 1 – 2 – 6 – 2, then click “OK”.

In each round of the experiment, you will have five minutes to encode as many words as you wish. In rounds 1, 3, 5, 7 and 9, the round ends after the five minutes have finished, and your profit is 15p (£0.15) for each word you correctly encoded.

In rounds 2, 4, 6, 8 and 10, there is another stage after the encoding task is over. In this stage, you have the opportunity to bargain with a randomly chosen participant, over a prize of £10. The way you bargain is by sending and receiving proposals for dividing the £10. Below is an example of how the bottom portion of your computer screen will look during this bargaining stage.
To send a proposal to the other person, type the amounts for yourself and the other person in the “Make a proposal” box, then click “Send proposal”. The amounts you enter must be between 0 and 10 (inclusive), and can have 0, 1 or 2 decimal places. The two amounts together must add up to £10 or less. All of your proposals will appear in the box in the bottom-centre of your screen, and all of the proposals made by the other person will appear in the box in the bottom-right. The person paired with you will see these proposals as well, but no one else will be able to see your proposals, nor will you be able to see theirs.

You may accept any one of the proposals from the person paired with you, or none of them. To accept a proposal, highlight the one you wish to accept and click “Accept proposal”. If either you or the other person accepts a proposal, then you have reached an agreement, and the prize is divided according to the accepted proposal.

The bargaining stage lasts for up to 2 minutes; you may send as many or as few proposals as you wish during that time. You may end the bargaining stage before the 2 minutes are over, by clicking on the button labelled “End this stage” on the right of your screen. Once you or the person matched with you has clicked this button, it is not possible to send or accept proposals.

If you or the other person ends the bargaining stage early, or if the time available for proposals ends without you reaching an agreement, then you receive an outside option equal to 15p for each word you had encoded, and the other person receives an outside option equal to 15p for each word he/she had encoded. Both you and the person paired with you are informed of both outside options at the beginning of the bargaining stage.

Organisation of the experiment: This experimental session has three parts.
(1) We will begin with a short questionnaire, where you will answer some demographic questions.
(2) Next, there will be a one-minute practice round, so that you can familiarise yourself with the encoding task. After the one minute has ended, the computer screen will show the number of words you correctly encoded. The results of this practice round will not affect the amount you are paid.
(3) Then, the main part of the experiment will begin. Each round proceeds as follows:
 (a) You perform the encoding task. In odd-numbered rounds, you earn 15p for each word correctly encoded. In even-numbered rounds, this amount becomes your outside option for the bargaining stage.
 (b) If it is an even-numbered round, the computer randomly pairs you with another participant, and your screen displays both of your outside options. You can send proposals for dividing the £10.00 prize. The other person can also send proposals for dividing the £10.00 prize; you can accept one of these proposals or none of them.
 (c) The round ends. Your computer screen displays the number of words you encoded and your profit. In even-numbered rounds, it also displays whether or not you reached an agreement, and the other person’s profit.

Payments: The amount you are paid will depend on the results of the experiment. The computer will randomly select four rounds out of the ten you played. You will be paid the total of your profits from those selected rounds. Payments are made privately and in cash at the end of the session.

[NDG instructions]
You are about to participate in a study of decision making. Please read these instructions carefully, as your payment may depend on how well you understand them. If you have any questions, please feel free to ask the experimenter. We ask that you not talk with the other participants – or anyone else – during the experiment.

The main part of this experiment consists of ten rounds. In each round, you will perform an encoding task. Your computer screen will display a “word” – a sequence of 1-10 letters of the alphabet – along with a key showing the number that corresponds to each letter. Below each letter on your screen will be a blank space. Inside each space, you should type the number that corresponds to the letter above it. Once you have encoded the entire word, click the “OK” button. If you have encoded the word correctly, the computer will accept it and display a new word. The key will stay the same for all words during a round, but may change.
from round to round.

Example: Suppose the key is as follows (this is just an example; the actual key might be different):

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

Suppose the word you are given is G – A – J – F – J. The code for G is 7 (below G in the table), and the codes for A, J, F and J are 1, 2, 6 and 2. So, you would encode this word as 7 – 1 – 2 – 6 – 2, then click “OK”.

In each round of the experiment, you will have five minutes to encode as many words as you wish. In rounds 2, 4, 6, 8 and 10, the round ends after the five minutes have finished, and your profit is 15p (£0.15) for each word you correctly encoded.

In rounds 1, 3, 5, 7 and 9, there is another stage after the encoding task is over. In this stage, you have the opportunity to bargain with a randomly chosen participant, over a prize of £10. The way you bargain is by each making simultaneous claims for shares of the £10.
- If your claim and the other person’s claim add up to £10 or less, you receive your claim, and the other person receives his/her claim.
- If the claims add up to more than £10, you receive an outside option equal to 15p for each word you had encoded, and the other person receives an outside option equal to 15p for each word he/she had encoded.

Both you and the person paired with you are informed of both outside options before choosing your claims.

Organisation of the experiment: This experimental session has three parts.
(1) We will begin with a short questionnaire, where you will answer some demographic questions.
(2) Next, there will be a one-minute practice round, so that you can familiarise yourself with the encoding task. After the one minute has ended, the computer screen will show the number of words you correctly encoded. The results of this practice round will not affect the amount you are paid.
(3) Then, the main part of the experiment will begin. Each round proceeds as follows:
 (a) You perform the encoding task. In even-numbered rounds, you earn 15p for each word correctly encoded. In odd-numbered rounds, this amount becomes your outside option for the bargaining stage.
 (b) If it is an odd-numbered round, the computer randomly pairs you with another participant, and your screen displays both of your outside options. You choose a claim for your share of the £10.00 prize. The other person chooses a claim for his/her share. Your claim can be any multiple of 0.01, between 0.00 and 10.00 inclusive. Be sure to enter your claim before the allotted time runs out, or the computer will enter a claim of zero for you.
 (c) The round ends. Your computer screen displays the number of words you encoded and your profit. In odd-numbered rounds, it also displays your claim, the claim made by the person paired with you, and the other person’s profit.

Payments: The amount you are paid will depend on the results of the experiment. The computer will randomly select four rounds out of the ten you played. You will be paid the total of your profits from those selected rounds. Payments are made privately and in cash at the end of the session.
C Additional screenshots from experiment

Error screen from real-effort task:

```
Round 1 of 10

You have correctly encoded word number 5

The word you are now encoding is number 5

WORD: Z T O X L

Tips:
- When a new word appears, if there are already numbers in the boxes, they may be incorrect. You should check them and replace them with the correct ones if necessary.
- You can use TAB on the keyboard to switch to the next box quickly. You can also change boxes using the mouse.
- After filling in the code numbers corresponding to a word, click the "OK" button to verify the code and proceed to the next word.
- The countdown clock in the upper right corner of the screen shows the time remaining.
```
Decision screen, NDG treatment:

<table>
<thead>
<tr>
<th>Round</th>
<th>Your words encoded</th>
<th>Your outside option ($)</th>
<th>Other person's words encoded</th>
<th>Other person's outside option ($)</th>
<th>Your claim ($)</th>
<th>Other person's claim ($)</th>
<th>Your profit ($)</th>
<th>Other person's profit ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1.22</td>
<td>3</td>
<td>0.45</td>
<td>—</td>
<td>—</td>
<td>0.00</td>
<td>—</td>
</tr>
</tbody>
</table>

You have been randomly matched to another participant.

You correctly encoded 8 words, so your outside option is £1.20.

The person matched with you correctly encoded 3 words, so their outside option is £0.45.

You and the other person can now bargain over £10.00.

If you reach an agreement (your claims total less than or equal to £10.00), you and the other person will receive the amounts you and he/she claimed.

If you do not reach an agreement, you will each receive your outside option.

Please choose your claim, in pounds. Your claim must be a multiple of 0.01, and must be at least £0.00 and at most £10.00. Do not type the £ sign in the box. Your claim can have zero, one or two decimal places. For example, a (hypothetical) claim of one thousand pounds could be written as 1000.0, 1000.00 or 1000.00.

Be sure to enter your claim before the clock at the top-right corner of your screen reaches zero. If you don't, the computer will enter a claim of 0.00 for you.
Feedback screen, NDG treatment:

<table>
<thead>
<tr>
<th>Round</th>
<th>Your words encoded</th>
<th>Your outside option ($)</th>
<th>Other person’s words encoded</th>
<th>Other person’s outside option ($)</th>
<th>Your claim ($)</th>
<th>Other person’s claim ($)</th>
<th>Your profit ($)</th>
<th>Other person’s profit ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.00</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1.20</td>
<td>3</td>
<td>0.45</td>
<td>0.60</td>
<td>3.50</td>
<td>6.00</td>
<td>3.50</td>
</tr>
</tbody>
</table>

THIS ROUND’S RESULTS:

You correctly encoded 8 words.

Your outside option was £1.20, and your claim was £0.60.

The other person’s outside option was £0.45, and his/her claim was £3.50.

Your combined claims were LESS THAN OR EQUAL TO the amount you were bargaining over, so you each receive your claims.

Your profit is £6.00.

The other person’s profit is £3.50.
Feedback screen, UBG treatment:

THIS ROUND'S RESULTS:

You correctly encoded 11 words:

Your outside option was £1.65, and the other person's outside option was £0.30.

You and the other person DID reach an agreement.

Your profit is £6.20.

The other person's profit is £3.80.