The Effects of Permanent and Temporary Shocks to Permanent and Temporary Employment: Time Series Evidence from the Korean Economy

November 2008

Sunoong Hwang and Youngmin Park

School of Economics
Yonsei University
1. Introduction

■ Motivation:

- In the past two decades, temporary employment (TE) has grown rapidly in a number of developed countries such as Spain, France, and Korea.

- For example, TE/total employees ratio increased from 28.3% to 47.3% between 1983 and 2007 in Korea.

■ Our Question:

What is the dominant source of the long- and short-run movements in permanent employment (PE) and TE of Korea?
1. Introduction (cont)

This Paper

- answers to the question by comparing common and idiosyncratic movements of PE, TE, and output (Y).

- shows that

 (1) cyclical parts of TE and Y exhibit a strong comovement
 (2) while that of PE is insensitive to the short-run output fluctuations.
 (3) temporary shocks (T-shocks) explain much of the movement in TE in the short-run.
 (4) permanent shocks (P-shocks) account for almost all of the PE fluctuations even in the short-run.
2. Backgrounds

Q1: Why do firms use TE?
- Adjustment costs are low ⇒ (Numerical) Flexibility
 (i) Less firing costs and restrictions imposed by labor laws
 (ii) Firing does not affect remaining workers' effort

※ Goux et al., 2001; Abowd and Kramarz, 2003; Alonso-Borrego et al., 2005

Q2: Why do firms use PE?
- Productivity is high (Booth et al., 2002; Saint-Paul, 1996)
 (i) Firm-specific human capital
 (ii) Job satisfaction
- Separation rate is low (Wasmer, 1999)
2. Backgrounds (cont)

Q3: When do firms adjust PE/TE?
- Depends on the persistence of the shock that they face (Saint-Paul, 1996)
 (i) Given positive T-shock, firms will increase TE,
 since some workers should be fired as the effect of the shock vanishes
 (ii) Given positive P-shock, firms will increase PE to enhance productivity

■ Our Contribution
- Finding empirical evidence on
 whether PE reacts to the permanent component of the shock,
 and TE to its transitory component
 using time series technique
3. Econometric Methodology: Data Generating Process

- Basic Assumptions

 A.1) Random Causes (Impulse) and Propagation (Slutzky, 1927; Frisch, 1933)
 A.2) Stochastic trends (Beverage and Nelson, 1981)
 A.3) Common stochastic trends (Stock and Watson, 1988)

- By A.1. and A.2., we formalize the DGP as follows:
 \[
 \Delta X_t = C(L)\varepsilon_t
 \]
 where every component of \(X_t = \{PE_t, TE_t, Y_t\}'\) is I(1).

- (1) can be written in level form as follows:
 \[
 X_t = C(1)\sum_{s=1}^{t} \varepsilon_s + C^*(L)\varepsilon_t
 \]

- If A.3. holds, \(C(1)\) is not full rank (cointegration).
3. Econometric Methodology: Common factor representation

\[X_t = A_1 f_t + \widetilde{X}_t \]
\[= T_t + C_t \quad (3) \]

where \(f_t \): nonstationary common factors

\[A_1 f_t = T_t : \text{trend (nonstationary)} \]
\[\widetilde{X}_t = C_t : \text{cycle (stationary)} \]

- dimension of \(A_1 \) (# of common trend)

\[= n - r \quad (n=# \text{ of variables}, \ r=# \text{ of cointegration}) \]

※ Examples of common stochastic trends

: productivity growth, labor force growth, institutional change etc.
3. Econometric Methodology: Trend-Cycle Decomposition
 (Gonzalo and Granger, 1995)

- Restrictions
 (i) f_t is a linear combination of X_t
 (ii) \bar{X}_t does not Granger-cause X_t in the long run

- Procedure
 1. Estimating VECM
 \[
 \Delta X_t = \alpha \beta' X_{t-1} + \sum_{i=1}^{p-1} \Gamma_i \Delta X_{t-i} + e_t
 \]
 (4)
 where α: adjustment coefficient matrix, β: cointegration matrix.

 2. Calculating f_t
 \[f_t = \alpha'_{\perp} X_t, \quad A_1 = \beta_{\perp} (\alpha'_{\perp} \beta_{\perp})^{-1}\]
 where $\alpha_{\perp} (\beta_{\perp})$: the orthogonal complement of $\alpha (\beta)$
3. Econometric Methodology: Forecast Error Variance Decomposition

- Identifying P- and T-shocks (Issler and Vahid, 2001)

① One-step-ahead trend innovations \leftarrow the first differences of the common trends.

② J-step-ahead trend innovations \leftarrow cumulation of J consecutive one-step-aheads.

③ Cyclical innovations
 \leftarrow residuals of the cyclical components regressed on the RHS variables of (4)

④ T-shocks \leftarrow the residuals of the cyclical innovations regressed on the trend innovations
 P-shocks \leftarrow the remainder of the total innovations
4. Empirical Results: Data

- Korean quarterly data on PE, TE, and real GDP for 1987:Q2~2007:Q4
- Employment: *Economically Active Population Survey* (National Statistical Office)
- GDP: *National Account*

Figure 1. Logarithms of Permanent Employment, Temporary Employment, and Output
4. Empirical Results: Integration properties

: All variables are I(1)
⇔ Stochastic trends (A.2)

Table 1. Unit root test results

<table>
<thead>
<tr>
<th></th>
<th>ERS</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanent Employment</td>
<td>-1.688(2)</td>
<td>-1.445(5)</td>
</tr>
<tr>
<td>Temporary Employment</td>
<td>-2.586(1)</td>
<td>-2.298(3)</td>
</tr>
<tr>
<td>Output</td>
<td>-1.389(1)</td>
<td>-2.278(2)</td>
</tr>
<tr>
<td>(ii) First Differences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permanent Employment</td>
<td>-3.377(1)***</td>
<td>-5.510(4)***</td>
</tr>
<tr>
<td>Temporary Employment</td>
<td>-3.530(1)***</td>
<td>-7.003(1)***</td>
</tr>
<tr>
<td>Output</td>
<td>-6.238(0)***</td>
<td>-6.814(2)***</td>
</tr>
</tbody>
</table>
4. Empirical Results: Cointegration properties

: 1 cointegration relationship

⇔ 2 common stochastic trends among 3 variables (A.3)

Table 2. Cointegration test results using Johansen's technique

<table>
<thead>
<tr>
<th></th>
<th>Trace test</th>
<th>Max test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H_0</td>
<td>H_a</td>
</tr>
<tr>
<td>$r = 0$</td>
<td>$r > 0$</td>
<td></td>
</tr>
<tr>
<td>$r \leq 1$</td>
<td>$r > 1$</td>
<td>19.998</td>
</tr>
<tr>
<td>$r \leq 2$</td>
<td>$r > 2$</td>
<td>7.414</td>
</tr>
</tbody>
</table>

Estimated cointegration relationship: $TE_t = -0.537PE_t + 0.31Y_t + 0.004t$

Adjustment coefficients: $\alpha_{TE} = -0.443(-3.864)^*$, $\alpha_{PE} = -0.069(-0.636)$, $\alpha_Y = -0.401(-4.346)$
4. Empirical Results: Trend-Cycle Decomposition

- **Trends**
 - PE: move very closely to its trend (\Rightarrow very small cycle)
 - TE & Y: show some gap (\Rightarrow volatile cycle)
4. Empirical Results: Trend-Cycle Decomposition (cont)

- **Cycles**
 - TE is much more volatile than PE
 - TE and Y have similar cycles (amplitude, duration, highly correlated)
 - PE is insensitive to cyclical Y movements.

This shows
- TE is used as a "buffer" to absorb most cyclical output fluctuations, thus insulate PE from those movements.
4. Empirical Results: Variance Decomposition

- T-shocks are the main source of TE movements in the short run.
- P-shocks explain almost all the fluctuations in PE even in the short run.

<table>
<thead>
<tr>
<th>horizon (year)</th>
<th>Permanent Employment</th>
<th>Temporary Employment</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.7</td>
<td>75.7</td>
<td>55.4</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>43.7</td>
<td>39.8</td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
<td>28.3</td>
<td>28.9</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>14.8</td>
<td>11.9</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
<td>12.8</td>
<td>11.9</td>
</tr>
<tr>
<td>10</td>
<td>0.4</td>
<td>20.6</td>
<td>6.0</td>
</tr>
</tbody>
</table>
4. Empirical Results: Variance Decomposition (cont)

This implies

- Firms' relative demand for PE vs. TE crucially depends on the persistence of the shock.

- As the persistence of demand shocks increases, firms may find the use of permanent workers more valuable, even though it may involve considerable adjustment costs

- supporting the theoretical speculation of Saint-Paul (1996)
5. Conclusions

① Cyclical components of TE and Y
 show a strong comovement and are much more volatile than that of PE

⇒ most cyclical fluctuations of Y are absorbed by TE
⇒ PE is insulated from those adjustments

② PE movements are affected only by P-shocks,
 whereas T-shocks explain a large proportion of cyclical movements of TE

⇒ Firms' relative demand for PE vs. TE crucially depend on
 the persistence of the shock
⇒ Firms may find the use of permanent workers more valuable as the persistence of
 demand shocks increases, even though it may involve considerable adjustment costs